K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

\(x^2-2x=24\)

<=>  \(x^2-2x-24=0\)

<=>  \( \left(x+4\right)\left(x-6\right)=0\)

<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

Vậy....

1 tháng 9 2019

\(a,\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)

\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)

\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)

\(\Leftrightarrow4\left(2+x\right)=0\)

\(\Leftrightarrow2+x=0\)

\(\Leftrightarrow x=-2\)

\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\)

\(\Leftrightarrow x=-127,5\)

21 tháng 12 2018

1) \(2x\left(x-3\right)+5x-15=0\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)

2) \(x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

3) \(x^2-12x+36=0\)

\(\left(x-6\right)^2=0\)

\(x-6=0\)

\(x=6\)

4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)

\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)

\(x^3+27-x^3+x-27=0\)

\(x=0\)

19 tháng 8 2018

a,\(3x\left(x-1\right)+x-1=0\)

\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(3x+1\right).\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

c,\(\left(2x-1\right)^2-25=0\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

3 tháng 8 2019

\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)

\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)

\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)

b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)

e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

16 tháng 11 2022

a: \(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

=>(x-2)(x^2+4x+6)=0

=>x-2=0

=>x=2

b: =>(2x-5)(2x+5)-(2x-5)(2x+7)=0

=>(2x-5)(2x+5-2x-7)=0

=>2x-5=0

=>x=5/2

c: =>(x+3)(x^2-3x+9+x-9)=0

=>(x+3)(x^2-2x)=0

=>\(x\in\left\{0;2;-3\right\}\)

3 tháng 7 2016

a, 2(x+5)=x2+5x

=> 2x+10=x2+5x

=> 0=x2+5x-2x-10

=> x2+3x-10=0

=> x2+5x-2x-10=0

=> x(x+5)-2(x+5)=0

=> (x-2)(x+5)=0

=> x-2 =0 hoặc x+5 =0

=> x=2 hoặc x=-5

b, 4x2-25=(2x-5)(2x+7)

=> (2x)2-52=(2x-5)(2x+7)

=> (2x-5)(2x+5) - (2x-5)(2x+7)=0

=> (2x-5)(2x+5-2x-7)=0

=> (2x-5)(-2)=0

=> 2x-5=0

=> 2x=5

=> x =2,5

c, x3+x=0

=>x(x2+1)=0

=> x=0 hoặc x2+1=0

Mà x2+1 >= 1 nên x=0

d, Hình như là thiếu đề

3 tháng 7 2016

a,=2x+10=x2+5x

   =-x2-2x-5x+10=0

   =-x2-7x+10=0

   Delta=(-7)2-4.-1.10=89

x1=7+căn89/2      x2=7-căn 89/2

CÁC CÂU KHÁC TỰ GIẢI NHA bạn

24 tháng 8 2018

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)

Ta có:

\(x^2+4x+6\)

\(=x^2+2.x.2+4+2\)

\(=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x

\(\Rightarrow x^2+4x+6\) vô nghiệm

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

c) \(2\left(x+3\right)x^2-3x=0\)

\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)

\(\Rightarrow x\left(2x^2+6x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)

Ta có:

\(2x^2+6x-3\)

\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)

\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x

\(\Rightarrow2x^2+6x-3\) vô nghiệm

\(\Rightarrow x=0\)

24 tháng 8 2018

Cảm ơn ạ

5 tháng 9 2017

dễ mà tự suy nghĩ và dùng máy tính bấm là ra thôi

3 tháng 8 2017

a ) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\Leftrightarrow-2\left(2x-5\right)=0\)

\(\Leftrightarrow2x-5=0\Leftrightarrow x=\dfrac{5}{2}.\)

Vậy .........

b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-4\end{matrix}\right.\)

Vậy .........

c ) \(2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x^2=-1\left(loại\right)\end{matrix}\right.\)

Vậy .........