Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(Emin\Leftrightarrow\hept{\begin{cases}6x^2+18x+21min\le0\\\left(x+2\right)^2max>0\end{cases}\Leftrightarrow\hept{\begin{cases}6x\left(x+3\right)\le21\\x+2>0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x\left(x+3\right)\le7\\x>-2\end{cases}}}\)
Bạn tự làm tiếp nhé!
do 16x4 \(\ge\)0
72x2 \(\ge\)0
=> 16x^4 - 72x^2 \(\ge\)0
=> 16x^4 - 72x^2 + 90 \(\ge\)0
hay G(x) \(\ge\)90
GTNN của G(x) = 90
dấu = xảy ra <=> x = 0
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a, A = /x-1/ + / y+3 / - 7
ta có : /x-1/ >_ 0
/y+3/>_ 0
=> /x-1/ + /y+ 3/ >_ 0
=>/x-1/ +/y+3/ - 7 >_ -7
=> A >_ -7
=> Amin =-7
nhớ tích nha bạn
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
Tìm giá trị nhỏ nhất của đa thức g(x)=16x4-72x2+90
Ta có:
g(x)=16x4−72x2+90
=(4x2)2−2.4x2.9+92+9
=(4x2−9)2+9
Với mọi giá trị của x ta có: (4x2−9)2≥0
⇒g(x)=(4x2−9)2+9≥9
Dấu "=" xảy ra khi ⇔(4x2-9)2=0⇔x=± \(\frac{3}{2}\)
Vậy GTNN của đa thức \(g\left(x\right)\)là 9 tại x=\(\pm\frac{3}{2}\)
\(x^2-18x+90=x^2-2.x.9+9^2+9=\left(x-9\right)^2+9\\ Vậy:\left(x-9\right)^2+9\ge9\forall x\in R\\ Vậy.GTNN.biểu.thức.là:9.khi.x=9\)