K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

10 tháng 11 2017

B1

A nhỏ nhất khi x=5

B2 

B nhỏ nhất khi 2 <= x <= 3

16 tháng 12 2018

bài 1:

  7

bài 2:

 5

A=|x-3|+|x-5|+|7-x| >= |x-3+7-x|+|x-5|=|4|+|x-5|=4+|x-5|

vì |x-5|>=0 với mọi x

=>A>=4+0=4

dấu "=" xảy ra khi 

(x-3)(7-x)>=0 va x-5=0

<=>x>=3 và x<=7 va x=5

suy ra GTNN của A=4 khi  x=5

 
3 tháng 2 2019

Có tâm trả lời nốt hộ bài 2 bạn ơi =)))

7 tháng 9 2019

Vì \(-|x+5|\le0;\forall x\)

\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)

\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)

Hay \(E\ge\frac{1}{3,5};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)

                        \(\Leftrightarrow x=-5\)

Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)

-|x+5|<=0 với mọi x

=>3,5-|x+5|<=3,5

=>E>=1/3,5=1:7/2=2/7

dấu "=" xảy ra khi và chỉ khi x+5=0

=>x=-5

vậy GTNN của E=2/7 tại x=-5

6 tháng 10 2018

a) Để \(2018+\sqrt{2018-x}\)  thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)

b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên

\(A=2018+\sqrt{2018-x}\ge2018\)

Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)

28 tháng 10 2016

a) Để A có nghĩa thì \(2003-x\ge0\Rightarrow x\le2003\)

b) Có: \(\sqrt{2003-x}\ge0\forall x\le2003\)

\(\Rightarrow A=2004+\sqrt{2003-x}\ge2004\forall x\le2003\)

Dấu ''=" xảy ra khi \(\sqrt{2003-x}=0\)

\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)

Vậy với x = 2003 thì A đạt GTNN là 2004

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.