Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đề bài => \(\frac{159-x}{141}+1+\frac{157-x}{143}+1+...+\frac{151-x}{149}+1=0\)
=>\(\frac{300-x}{141}+\frac{300-x}{143}+...+\frac{300-x}{149}=0\)
=>\(\left(300-x\right).\left(\frac{1}{141}+\frac{1}{143}+...+\frac{1}{149}\right)=0\)
vì \(\frac{1}{141}+\frac{1}{143}+...+\frac{1}{149}\ne0\)
=> \(300-x=0\)
=>\(x=300\)
chờ mình chút sẽ có câu b. k cho mình nha.
XXét tứ giác AMDN có ^AMD=^MAN=^AND=90∞
⇒AMDN là hình chữ nhật
hcn AMDN có AD là phân giác góc A
⇒AMDN là hình vuông(dấu hiệu 3)
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
`(x+3)(x^2-5x+8)=(x+3).x^2`
`<=>(x+3)(x^2-5x+8-x^2)=0`
`<=>(x+3)(8-5x)=0`
`<=>` \(\left[ \begin{array}{l}x+3=0\\8-5x=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=\dfrac85\\x=-3\end{array} \right.\)
Vậy `S={-3,8/5}`
`(x+3)(x^2-5x+8)=(x+3).x^2`
`<=>(x+3)(x^2-5x+8-x^2)=0`
`<=>(x+3)(-5x+8)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\-5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{8}{5}\end{matrix}\right.\)
Vậy `S={-3;8/5}`.
\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)
\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)
\(\Leftrightarrow2x^2+5=0\)(vô lý)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)
\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)
Vậy pt vô nghiệm
Đặt \(A=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Ta có: \(\hept{\begin{cases}\left|x-2021\right|=\left|2021-x\right|\\\left|x-2020\right|=\left|2020-x\right|\end{cases}}\)
Ta lại có: \(\hept{\begin{cases}\left|x-2018\right|+\left|2021-x\right|\ge\left|x-2018+2021-x\right|=3\\\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|=1\end{cases}}\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\ge1+3=4\)
\(\Rightarrow A_{min}=4\)
Dấu '=' xảy ra khi: \(\hept{\begin{cases}\left(x-2018\right).\left(2021-x\right)\ge0\\\left(x-2019\right).\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2018\le x\le2021\\2019\le x\le2020\end{cases}}\)\(\Rightarrow2018\le x\le2020\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(2018\le x\le2020\)
Nếu các bạn chưa hiểu chỗ suy ra ở chỗ dấu bằng xảy ra thì bạn hãy lập bảng xét dấu nhé ^_^
@#@@# Chúc bn hok tốt #@#@!
\(-x-y^2+x^2-y\)
\(\Rightarrow-x-y+x^2-y^2\)
\(\Rightarrow-\left(x+y\right)+\left(x+y\right)\left(x-y\right)\)
\(\Rightarrow\left(x+y\right)\left(y-x\right)\)
ta có :3(x-2)-x=0
=>3x-6-x=0
=>3x-x=0+6
=>2x=6
=>x=3
k cho minh nhé
\(\frac{x+143}{157}+\frac{x+146}{154}=\frac{x+149}{151}+\frac{x+152}{148}\)
\(\Leftrightarrow\frac{x+143}{157}+1+\frac{x+146}{154}+1=\frac{x+149}{151}+1+\frac{x+152}{148}+1\)
\(\Leftrightarrow\frac{x+300}{157}+\frac{x+300}{154}=\frac{x+300}{151}+\frac{x+300}{148}\)
\(\Leftrightarrow\left(x+300\right)\left(\frac{1}{157}+\frac{1}{154}-\frac{1}{151}-\frac{1}{148}\right)=0\)
có \(\frac{1}{157}+\frac{1}{154}+\frac{1}{151}+\frac{1}{148}\ne0\)
\(\Leftrightarrow x+300=0\)
\(\Leftrightarrow x=-300\)