Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\dfrac{x-5}{1990}-1\right)+\left(\dfrac{x-15}{1980}-1\right)+\left(\dfrac{x-25}{1970}-1\right)\\ +\left(\dfrac{x-1990}{5}-1\right)+\left(\dfrac{x-1980}{15}-1\right)+\left(\dfrac{x-1970}{25}-1\right)=0\\ \Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}+\dfrac{x-1995}{1970}+\dfrac{x-1995}{5}\\ +\dfrac{n-1995}{15}+\dfrac{n-1995}{25}=0\\ \Rightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}+\dfrac{1}{1970}+\dfrac{1}{5}+\dfrac{1}{15}+\dfrac{1}{25}\right)=0\)
\(\Rightarrow x-1995=0\\ \Rightarrow x=1995\)
\(\frac{x+143}{157}+\frac{x+146}{154}=\frac{x+149}{151}+\frac{x+152}{148}\)
\(\Leftrightarrow\frac{x+143}{157}+1+\frac{x+146}{154}+1=\frac{x+149}{151}+1+\frac{x+152}{148}+1\)
\(\Leftrightarrow\frac{x+300}{157}+\frac{x+300}{154}=\frac{x+300}{151}+\frac{x+300}{148}\)
\(\Leftrightarrow\left(x+300\right)\left(\frac{1}{157}+\frac{1}{154}-\frac{1}{151}-\frac{1}{148}\right)=0\)
có \(\frac{1}{157}+\frac{1}{154}+\frac{1}{151}+\frac{1}{148}\ne0\)
\(\Leftrightarrow x+300=0\)
\(\Leftrightarrow x=-300\)
Ta có: \(\dfrac{x-25}{75}+\dfrac{x-15}{85}+\dfrac{x-5}{95}+\dfrac{x-145}{15}=0\)
\(\Leftrightarrow\dfrac{x-25}{75}-1+\dfrac{x-15}{85}-1+\dfrac{x-5}{95}-1+\dfrac{x-145}{15}+3=0\)
\(\Leftrightarrow\dfrac{x-100}{75}+\dfrac{x-100}{85}+\dfrac{x-100}{95}+\dfrac{x-100}{15}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{75}+\dfrac{1}{85}+\dfrac{1}{95}+\dfrac{1}{15}\right)=0\)
mà \(\dfrac{1}{75}+\dfrac{1}{85}+\dfrac{1}{95}+\dfrac{1}{15}>0\)
nên x-100=0
hay x=100
Vậy: S={100}
x-5/1990+x-15/1980+x-25/1970=x-1990/5+x-1980/15+x-1970/25
<=> (x-5/1990-1)+(x-15/1980-1)+(x-25/1970-1)=(x-1990/5-1)+(x-1980/15-1)+(x-1970/25-1)
<=> x-1995/1990+x-1995/1980+x-1995/1970=x-1995/5+x-1995/15+x-1995/25
<=> (x-1995)(1/1990+1/1980+1/1970-1/5-1/15-1/25)=0
<=> x-1995=0
<=> x=1995
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}+\frac{x-15}{1980}+\frac{x-25}{1970}-3=\frac{x-1990}{5}+\frac{x-1980}{15}+\frac{x-1970}{25}-3\)
\(\Leftrightarrow\)\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1+\frac{x-25}{1970}-1=\frac{x-1990}{5}-1+\frac{x-1980}{15}-1+\frac{x-1970}{25}-1\)\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}-\frac{x-1995}{15}-\frac{x-1995}{25}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}-\frac{1}{15}-\frac{1}{25}\right)=0\)
\(\Leftrightarrow\)\(x-1995=0\)
\(\Leftrightarrow\)\(x=1995\)
a) đề bài => \(\frac{159-x}{141}+1+\frac{157-x}{143}+1+...+\frac{151-x}{149}+1=0\)
=>\(\frac{300-x}{141}+\frac{300-x}{143}+...+\frac{300-x}{149}=0\)
=>\(\left(300-x\right).\left(\frac{1}{141}+\frac{1}{143}+...+\frac{1}{149}\right)=0\)
vì \(\frac{1}{141}+\frac{1}{143}+...+\frac{1}{149}\ne0\)
=> \(300-x=0\)
=>\(x=300\)
chờ mình chút sẽ có câu b. k cho mình nha.