K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

gọi UCLN(6n+5,2n+3) là d

suy ra (6n+5) chia hêt cho d, (2n+3) chia hết cho d

suy ra [(2n+3)-(6n+5)] chia het cho d

suy ra [3.(2n+3)-(6n+5)] chia het cho d

suy ra [(3.2n+3.3)-(6n+5)] chia het cho d

suy ra[(6n+9)-(6n+5)] chia het cho d

suy ra 4 chia het cho d

suy ra d thuoc U(4)

suy ra d thuoc {1;2;4}

vi 6n ko chia het cho 4 va 5 ko chia het cho4 

suy ra (6n+5) ko chia het cho 4

suy ra d ko bang 4

vi 6n chia het cho 2 va 5 ko chia het cho 2

suy ra (6n+5) ko chia het cho 2

suy ra d ko bang 2

do do d=1

suy ra UCLN(6n+5,2n+3)=1

suy ra 6n+5 va 2n+3 nguyen to cung nhau

vay: tu tra loi cai vay nhe, tao chi giup may the thoi

17 tháng 12 2017

Gọi ƯLCN của 6n+5 và 2n+3 là d (d thuộc N sao)

=> 6n+5 và 2n+3 đều chia hết cho d

=> 6n+5 và 3.(2n+3) đều chia hết cho d    hay 6n+5 và 6n+9 đều chia hết cho d

=> 6n+9-(6n+5) chia hết cho d    hay 4 chia hết cho d (1)

Mà 2n+3 lẻ => d lẻ (2)

Từ (1) và (2) => d =1 ( vì d thuộc N sao )

=> ƯCLN của 6n+5 và 2n+3 là 1

=> 6n+5 và 2n+3 là 2 số nguyên tố cùng nhau

k mk nha

8 tháng 7 2017

Gọi ƯCLN (2n+3,3n+4) là d

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)

\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)2n+3 và 3n+4 nguyên tố cùng nhau

12 tháng 7 2017

ban oi tai sao lai lam nhu vay

21 tháng 5 2019

Ta có A = 1 + 2 +3 + ... + n

             = n(n+1) : 2

lại có n(n+1) là tích chẵn

=> n(n+1) \(⋮\)2

=> a \(⋮\)2

=> a chẵn 

mặt khác, 2n + 1 \(⋮̸\)2

=> 2n + 1 là số lẻ

=> b lẻ

Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1

=> chúng là 2 số nguyên tố cùng nhau

tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)

4 tháng 1 2017

Gọi ƯCLN ( 2n + 3 , 3n + 5 ) = d.

Ta có : 2n + 3 chia hết cho d.

           3n + 5 chia hết cho d.

=> 3( 2n + 3 ) chia hết cho d.

=> 2(3n + 5 ) chia hết cho d.

=> 6n + 9 chia hết cho d.

=> 6n +10 chia hết cho d.

Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.

      = 1 chia hết cho d

=> d thuộc Ư ( 1 )

=> d = 1

Vì ƯCLN ( 2n + 3 , 3n + 5 ) = 1

Nên 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.

2 tháng 12 2017

gọi d là ƯCLN (2n+3;3n+5) (với n thuộc N*)

suy ra  2n+3 chia hết cho d } 3(2n+3) chia hết cho d } 6n+9 chia hết cho d

           3n+5 chia hết cho d }  2(3n+5) chia hế cho d } 6n+10 chia hết cho d

suy ra [(6n+10) -(6n+9) chia hết  cho d

        =[(6n-6n)+(10-9)] chia hết cho d

        =[0+1] chia hết cho d

        =1 chia hết cho d

vì 1 chia hết cho d suy ra ƯCLN(2n+3,3n+5)=1

13 tháng 1 2021

Bài 1 

a, 

Gọi d là ƯCLN(6n+5;4n+3)

\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\) 

\(\Rightarrow12n+10-\left(12n+9\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1 

Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau 

b, Vì số nguyên dương nhỏ nhất là số 1 

=> x+ 2016 = 1 

=> x= 1-2016 

x= - 2015

13 tháng 1 2021

Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)

\(6n+5⋮d\Rightarrow12n+10⋮d\)

\(4n+3⋮d\Rightarrow12n+9⋮d\)

Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)

Vậy ta có đpcm 

13 tháng 11 2016

Ta thấy 

3 ; 8 là 2 số nguyên tố cùng nhau

Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .

Các số có ước chung lớn nhất là 1 thì là số nguyên tố . 

13 tháng 11 2016

Ta thấy 

3 ; 8 là 2 số nguyên tố cùng nhau

Khi cộng vào 2n và 4n thì cũng sẽ có 2n và 4n không cùng chia hết cho bất cứ số nào nên UCLN là 1 .

Các số có ước chung lớn nhất là 1 thì là số nguyên tố .