Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\frac{26}{x+3}\) là số tự nhiên
<=> 26 \(⋮\) x + 3
=> x + 3 \(\in\) Ư(26) = { - 26 ; - 13 ; - 2 ; -1 ; 1 ; 2 ; 13 ; 26 }
Vì để phân số là số tự nhiên => Ta không nhận các giá trị âm
Vậy ta chỉ lấy các Ư(26) = { 1 ; 2 ; 13 ; 26 }
Ta có bảng sau
x+3 | 1 | 2 | 13 | 26 |
x | -2 | -1 | 10 | 23 |
Vậy x = - 2 ; -1 ; 10 ; 23
b) Để phân số \(\frac{x+6}{x+1}\) là 1 số tự nhiên
<=> x + 6 chia hết cho x + 1
=> ( x + 1 ) + 5 chia hết cho x + 1
=> x + 1 chia hết cho x + 1 ( điều này luôn luôn đúng với mọi x )
5 cũng phải chia hết cho x + 1
=> x + 1 \(\in\) Ư(5) = { -5 ; -1 ; 1 ; 5 }
Vì để phân số đạt giá trị tự nhiên , ta sẽ ko nhận giá trị âm
=> Ta chỉ nhận các Ư(5) ={ 1 ; 5 }
Ta có bảng sau :
x+1 | 1 | 5 |
x | 0 | 4 |
Vậy x = 0 ; 4
c) Để phân số \(\frac{x-2}{x+3}\) đạt giá trị tự nhiên
<=> x - 2 chia hết cho x + 3
=> ( x + 3 ) - 5 chia hết cho x - 3
=> x + 3 chia hết cho x - 3 ( điều này luôn luôn đúng với mọi x )
5 cũng phải chia hết cho x - 3
=> x - 3 \(\in\) Ư(5) = { - 5 ; -1 ; 1 ; 5 }
Để phân số là số tự nhiên , ta không nhận các giá trị âm
=> Ta chỉ nhận các giá trị là Ư(5) = { 1 ; 5 }
Ta có bảng sau :
x-3 | 1 | 5 |
x | 4 | 8 |
Vậy x = 4 ; 8
d) Để phân số \(\frac{2x+1}{x-3}\) đạt giá trị tự nhiên
<=> 2x + 1 chia hết cho x - 3
=> ( 2x - 6 ) + 7 chia hết cho x - 3
=> 2(x - 3) + 7 chia hết cho x - 3
=> 2(x - 3) chia hết cho x - 3 ( điều này luôn luôn đúng với mọi x )
7 cũng phải chia hết cho x - 3
=> x - 3 \(\in\) Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Để phân số đạt giá trị tự nhiên , ta không nhận các giá trị âm
=> Ta chỉ nhận các giá trị là Ư(7) = { 1 ; 7 }
Ta có bảng sau :
x-3 | 1 | 7 |
x | 4 | 10 |
Vậy x = 4 ; 10
Để A có giá trị nguyên
thì 3\(⋮\)(x-1)
mà xeZ nên x-1eZ
x-1e{3;-3}
xe{4;-2}
x-2/x+3 có giá trị nguyên
<=>x-2 chia hết cho x+3
<=>(x+3)-5 chia hết cho x+3
Mà x+3 chia hết cho x+3
=>-5 chia hết cho x+3
=>x+3 E Ư(-5)={-5;-1;1;5}
=>x E {-8;-4;-2;2}
Để phân số \(\frac{x-2}{x+3}\) có giá trị là 1 số nguyên
\(\Rightarrow x-2⋮x+3\)
\(\Rightarrow x+3-5⋮x+3\)
mà \(x+3⋮x+3\)
\(\Rightarrow5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)\)
\(\Rightarrow x+3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-8;-4;-2;2\right\}\)
a,A = \(\dfrac{3}{x-1}\)
A \(\in\) Z \(\Leftrightarrow\) 3 ⋮ \(x-1\) ⇒ \(x-1\) \(\in\) { -3; -1; 1; 3}
\(x\) \(\in\) { -2; 0; 2; 4}
b, B = \(\dfrac{x-2}{x+3}\)
B \(\in\) Z \(\Leftrightarrow\) \(x-2\) \(⋮\) \(x+3\) ⇒ \(x+3-5\) \(⋮\) \(x+3\)
⇒ 5 \(⋮\) \(x+3\)
\(x+3\) \(\in\){ -5; -1; 1; 5}
\(x\) \(\in\) { -8; -4; -2; 2}
a.\(A=\dfrac{3}{x-1}\)có giá trị là 1 số nguyên khi \(3\) ⋮ \(x-1.\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}.\)
Ta có bảng:
\(x-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(2\) | \(0\) | \(4\) | \(-2\) |
TM | TM | TM | TM |
Vậy \(x\in\left\{-2;0;2;4\right\}.\)
b.\(B=\dfrac{x-2}{x+3}\)có giá trị là 1 số nguyên khi \(x-2\) ⋮ \(x+3.\)
\(\Rightarrow\left(x+3\right)-5⋮x+3.\)
Mà x+3 ⋮ x+3 \(\Rightarrow\) Ta cần: \(-5⋮x+3\Rightarrow x+3\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}.\)
Ta có bảng:
\(x+3\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(-2\) | \(-4\) | \(2\) | \(-8\) |
TM | TM | TM | TM |
Vậy \(x\in\left\{-8;-4;-2;2\right\}.\)
a/ để A nguyên thì 3 chia hết x-1
=> x-1 thuộc ước của 3
x-1=3 thì x=4; x-1= -3 thì x= -2; x-1=1 thì x=2; x-1=-1 thì x= -1
b/ để B nguyên thì x^2-4x+6 chia hết x-3
ta có: x-3 chia hết x-3
=> (x-3)x chia hết x-3
x^2-3x chia hết x-3
mà x^2-4x+6 chia hết cho x-3 nên
x^2-3x-(x^2-4x+6) chia hết x-3
x^2-3x-x^2+4x-6 chia hết x-3
x+6 chia hết x-3
x-3 chia hết x-3
=> x-3+9 chia hết x-3
=> x-3 thuộc ước của 9
em tiếp tục làm tương tự như câu a nhé