Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)
\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Áp dụng Cauchy-Schwarz ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)
Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)
Khi đó bất đẳng thức được viết lại thành :
\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2
<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )
Đẳng thức xảy ra <=> a=b=c
bài này mới được thầy sửa hồi chiều nè @@
Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )
BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )
Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)
Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)
Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)
Ta có: \(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)
Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)
Suy ra sai đề :)
Ta có:
\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{2\left(a+b\right)}{\sqrt{4a\left(3a+b\right)}+\sqrt{4b\left(3b+a\right)}}\)
\(\ge\frac{2\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}=\frac{2\left(a+b\right)}{4\left(a+b\right)}=\frac{1}{2}\)
Dấu = xảy ra khi \(a=b\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b\)
ta có
A=\(\frac{a^4}{ab^2+abc+c^2a}+\frac{b^4}{bc^2+abc+ba^2}+\frac{c^4}{ca^2+abc+cb^2}\)
>=\(\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+a^2b+bc^2+cb^2+ca^2+ac^2+3abc}\) =\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\) (Đấy là bđt svacxơ nhé )
ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\sqrt{\frac{a^2+b^2+c^2}{3}}\Leftrightarrow\frac{\sqrt{a^2+b^2+c^2}\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)}\ge\frac{1}{\sqrt{3}}\)
điều này luôn đúng vì dễ dàng chứng minh \(a^2+b^2+c^2\ge ab+bc+ca;\)
và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}\)
đến đây bạn nhân vào sẽ ra ĐPCM
dáu = xảy ra <=> a=b=c>0
Let \(D=\left(a+b\right)\left(b+c\right)\left(c+a\right)\). Clearly \(D>0\). We show that the difference between the left-hand side and the right-hand of the inequality is non-negative
\(\frac{a^2+bc}{b+c}-a+\frac{b^2+ca}{c+a}-b+\frac{c^2+ab}{a+b}-c\)
\(=\frac{a^2+bc-ab-ac}{b+c}+\frac{b^2+ac-ab-bc}{a+c}+\frac{c^2+ab-ac-bc}{a+b}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{b+c}+\frac{\left(b-a\right)\left(b-c\right)}{a+c}+\frac{\left(c-a\right)\left(c-b\right)}{a+b}\)
\(=\frac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{D}\)
\(=\frac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{D}\)
\(=\frac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2D}\ge0\)
Equality holds if and only if \(a=b=c\)
Done !
Bđt cần chứng minh tương đương với:
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (Đúng)
Dấu "=" xảy ra khi a=b
<=> (a+b)2 >= 4ab (1)
<=> a2 +2ab+b2 >= 4ab
<=> a2 -2ab+b2>=0
<=> (a-b)2>=0 (2)
vi bat dang thuc (2) luon dung voi moi a,b nen bdt (1) duoc chung minh