K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Giải:

a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình:

2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0.

b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương).

Phương trình mặt phẳng (Q) có dạng:

2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0

c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R).

= (2 ; 3 ; 6)

Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0

22 tháng 5 2017

Ôn tập chương III

3 tháng 4 2017

a) Phương trình đường thẳng d có dạng: , với t ∈ R.

b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương

(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).

Do vậy phương trình tham số của d có dạng:

c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:

d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương

(4 ; 2 ; -1) nên phương trình tham số có dạng:


26 tháng 5 2017

Hình giải tích trong không gian

26 tháng 5 2017

Hình giải tích trong không gian

26 tháng 5 2017

Hình giải tích trong không gian

Hình giải tích trong không gian

1 tháng 4 2017

Giải:

a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)

(-1 ; -1 ; 3).

Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).

Phương trình (ACD) có dạng:

2(x - 5) + (y - 1) + (z - 3) = 0.

hay 2x + y + z - 14 = 0.

Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.

Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và

= (-12 ; -10 ; -6)

Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:

6(x - 1) + 5(y - 6) +3(z - 2) = 0

hay 6x + 5y + 3z - 42 = 0.

b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận

(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.

Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).

Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.

9 tháng 5 2017

Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .

Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .

Phương trình mặt phẳng (α) có dạng:

2(x - 2) - (y + 1) + 3(z - 2) = 0

hay 2x - y + 3z -11 = 0.