K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Đáp án B

Do d tạo với trục Ox một góc 450 nên có hệ số góc k = tan450= 1.

Phương trình d là: y = 1( x-3) -2 hay x- y-5= 0

Cho đường thẳng d đi qua M(2; 3) và tạo với chiều dương trục Ox một góc 450. PTTQ của đường thẳng d là 

A. 2x - y - 1 = 0   B. x - y + 1 = 0   C. x + y - 5 0 =     D. -x + y - 1 = 0

9 tháng 10 2018

Đáp án B

Gọi là đường thẳng cần tìm

 

Để  tạo  với đường thẳng ( d)  một góc 450 thì:

Tương đương : 2( A+ 3B) 2= 10( A2+ B2)

Nên  A= 2B hoặc B= -2A 

+ Với A= 2B, chọn B= 1 thì A= 2 ta được phương trình ∆ : 2x + y +  4= 0.; có hệ số góc là k= -2

+ Với B= -2A, chọn A= 1 thì B= -2 ta được phương trình ∆: x- 2y+ 2 = 0 ; có hệ số góc là k= 1/2

Vậy tổng các hệ số góc là:

9 tháng 9 2019

Đáp án B

Gọi là đường thẳng cần tìm và  n   → ( A ; B )  là VTPT của ∆  A 2 + B 2 ≠   0

Để  tạo  với đường thẳng ( d)  một góc 450 thì:

Tương đương: 2( A- 2B) 2= 5( A2+ B2)

Nên  A= -3B hoặc B= 3A 

+ Với A= - 3B, chọn B= -1 thì A= 3  ta được phương trình ∆ : 3x- y- 5= 0.

+ Với B= 3A, chọn A= 1 thì B= 3 ta được phương trình ∆: x+ 3y- 5 = 0 .

NV
6 tháng 3 2022

1. Phương trình d có dạng:

\(y=2\left(x-1\right)+1\Leftrightarrow y=2x-1\)

2. Do d tạo chiều dương trục Ox một góc 30 độ nên d có hệ số góc \(k=tan30^0=\dfrac{\sqrt{3}}{3}\)

Phương trình d:

\(y=\dfrac{\sqrt{3}}{3}\left(x-1\right)+2\Leftrightarrow y=\dfrac{\sqrt{3}}{3}x+\dfrac{6-\sqrt{3}}{3}\)

3. Do d tạo với trục Ox một góc 45 độ nên có hệ số góc thỏa mãn:

\(\left|k\right|=tan45^0\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=1\left(x-3\right)+4\\y=-1\left(x-3\right)+4\end{matrix}\right.\)

26 tháng 9 2019

Đáp án B

Phương trình đường thẳng d đi qua A ( -2; 0)  có dạng: A(x+ 2) + By= 0.

Theo giả thiết, ta có:

Vậy: d: 2x+ y+ 4= 0  hoặc  d: x- 2y + 2= 0.

NV
21 tháng 1

1.

Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)

2.

\(\overrightarrow{MI}=\left(1;-2\right)\)

Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt

Phương trình:

\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)