Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Vẽ tam giác đều:
Chia đường tròn thành 6 cung bằng nhau như phần a).
Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.
* Tính cạnh tam giác :
Gọi cạnh ΔABC đều là a.
Gọi H là trung điểm BC
⇒ HB = a/2
Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác
Mà OA = R ⇒ a = R√3.
* Vẽ lục giác đều nội tiếp (O; R) :
+ Lấy điểm A trên (O ; R).
+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R
+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R
+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R
+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R
ABCDEF là lục giác đều cần vẽ.
* Tính cạnh: AB = BC = CD = DE = EF = FA = R.
* Vẽ hình vuông :
+ Vẽ đường kính AC của đường tròn tâm O.
+ Vẽ đường kính BD ⊥ AC
Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.
Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).
* Tính cạnh :
ΔAOB vuông tại O
Hình a.
Gọi ai là cạnh của đa giác đều i cạnh.
a) a6= R (vì OA1A2 là tam giác đều)
Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung , ,..., mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn
b) Hình b
Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2
Cách vẽ như ở bài tập 61.
c) Hình c
A1H = R + =
A3H =
A1A3 = a
Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.
Từ đó = a2 - .
=> a2 = 3R2 => a = R√3
Cách vẽ như câu a) hình a.
Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c
Hình a.
Gọi ai là cạnh của đa giác đều i cạnh.
a) a6= R (vì OA1A2 là tam giác đều)
Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung , ,..., mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn
b) Hình b
Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2
Cách vẽ như ở bài tập 61.
c) Hình c
A1H = R + =
A3H =
A1A3 = a
Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.
Từ đó = a2 - .
=> a2 = 3R2 => a = R√3
Cách vẽ như câu a) hình a.
Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c
Dây AB bằng cạnh hình vuông nội tiếp đường tròn (O) nên ta có: và cung nhỏ AB có số đo bằng 360 ° : 4 = 90 °
Dây BC bằng cạnh hình tam giác đều nội tiếp đường tròn (O) nên ta có:
BC = R 3 và cung nhỏ BC có số đo bằng 360 ° : 3 = 120 °
Ta có:
Trong tam giác vuông ABH ta có:
Trong tam giác vuông ACH ta có:
a)
* Vẽ lục giác đều nội tiếp (O; R) :
+ Lấy điểm A trên (O ; R).
+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R
+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R
+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R
+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R
ABCDEF là lục giác đều cần vẽ.
* Tính cạnh: AB = BC = CD = DE = EF = FA = R.
b)
* Vẽ hình vuông :
+ Vẽ đường kính AC của đường tròn tâm O.
+ Vẽ đường kính BD ⊥ AC
Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.
Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).
* Tính cạnh :
ΔAOB vuông tại O
c)
* Vẽ tam giác đều:
Chia đường tròn thành 6 cung bằng nhau như phần a).
Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.
* Tính cạnh tam giác :
Gọi cạnh ΔABC đều là a.
Gọi H là trung điểm BC
⇒ HB = a/2
Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác
Mà OA = R ⇒ a = R√3.