Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 x 25 x 8 + 4 x 6 x 37 + 2 x 38 x 12
= (3 x 8) x 25 + (4 x 6) x 37 + (2 x 12) x 38
= 24 x 25 + 24 x 37 + 24 x 38
= 24 x (25 + 37 + 38)
= 24 x 100
= 2400
3 x 25 x 8 + 4 x 6 x 37 + 2 x 38 x 12
= (3 x 8) x 25 + (4 x 6) x 37 + (2 x 12) x 38
= 24 x 25 + 24 x 37 + 24 x 38
= 24 x (25 + 37 + 38)
= 24 x 100
= 2400
d)<=>2(n-3)+4 chia hết n-3
=>8 chia hết n-3
=>n-3\(\in\){-1,-2,-4,-8,1,2,4,8}
=>n\(\in\){2,1,-1,-5,4,5,7,11}
các phần khác ko hiểu đề
123 -5 . (x + 4) = 38
5 . (x + 4) = 123 - 38 = 85
x + 4 = 85 : 5 = 17
x = 17 - 4 = 13
(3x - 24) . 73 = 2.74
(3x - 24) = 2.7 = 14
3x - 16 = 14
3x = 14 + 16 = 30
x = 30 : 3 = 10
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
a) 5.5x.5x + 5 = 56
52x + 6 = 6
2x + 6 = 6
x = 0
b) 8x + 3.8x - 2 = 16 : 2
82x + 1 = 8
2x + 1 = 1
x = 0
c) 7x + 1.7x + 2.7x + 3 = 78 - 3x
73x + 6 = 78 - 3x
3x + 6 = 8 - 3x
x = \(\frac{1}{3}\)
a: (x-3)(x+2)<0
=>x+2>0 và x-3<0
=>-2<x<3
b: (x+2)(x+3)>0
=>x+2>0 hoặc x+3<0
=>x>-2 hoặc x<-3
d: 2(x+1)2=-7+15
=>2(x+1)2=8
=>(x+1)2=4
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
B=\(\frac{1.3}{2.2}\).\(\frac{2.4}{3.3}\)...\(\frac{\left(n-1\right)\left(n+1\right)}{nn}\)
B=\(\frac{\left[1.2...\left(n-1\right)\right]\left[3.4....\left(n+1\right)\right]}{\left(2.3...n\right)\left(2.3...n\right)}\)
B=\(\frac{1.\left(n+1\right)}{n.2}\)=\(\frac{n+1}{2n}\)