K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=1999+19992+19993+...+19991998

 =(1999+19992)+(19993+19994)+...+(19991997+19991998)

=1999(1+1999)+19993(1+1999)+...+19991997(1+1999)

=1999.2000+19993.2000+...+19991997.2000

=2000.(1999+19993+...+19991997)

Vậy S chia hết cho 2000

6 tháng 4 2017

TA CÓ

1999+19992+...+19991998

=(1999+19992)+....+(19991997+19991998)

=1999(1+1999)+...+19991997(1+1999)

=2000(1999+19993+...19991997) Chia hết cho 2000

CHÚC BẠN HỌC TỐT

13 tháng 7 2015

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>   (đpcm)

mình tự làm ko copy trong tưng tự 

29 tháng 11 2016

Gọi  (1999+19992+19993+...+19991998) = S

Tổng S có : (1998-1)/1+1=1998 (số hạng)

Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)

Ta có : S=1999+19992+19993+...+19991998

Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)

Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)

Suy ra:S=1999.2000+19993.2000+...+19991997.2000

Suy ra:S=2000.(1999+19993+...+19991997)

Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000

Vậy (1999+19992+19993+...+19991998) chia hết cho 2000

4 tháng 12 2015

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

18 tháng 4 2016

S = 1999 + 19992 + … + 19991998

S = 1999 ( 1 + 1999 + 19992 + … + 19991997 )

S = 1999 [ ( 1 + 1999 )( 1 + 19992 + 19994 + … + 19991996 ) ]

S = 1999 [ 2000 ( 1 + 19992 + 19994 + … + 19991996 ) ] chia hết cho 2000.

Vậy ta có điều phải chứng minh. 

25 tháng 6 2015

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>ĐPCM

l-i-k-e cho mình nha bạn

1 tháng 10 2016

   Ta có: A = (1999+19992+19993+...+19991998) chia hết cho 2000

                = (1999+19992)+(19993+19994)+...+(19991997+19991998)

                = 1999.(1999+1)+19993.(1999+1)+...+19991997.(1999+1)

                = 1999.2000+19993.2000+...+19991997.2000

                = 2000.(1999+19993+...+19991997)

              => Vậy, ta đã chứng minh được A chia hết cho 2000

25 tháng 8 2016

A = ( 1+3+3^2) + (3^3 +3^4 +3^5) + ....+(3^1998 +3^1999 +3^2000)

   = 1 * (1+3 +3^2) +3^3 *(1 +3+3^2) +...+3^1998 *(1+3+3^2)

   =(1+3^3 +...+3^1998) * (1+3+3^2)

   =(1+3^3 +...+3^1998) *13 

   =>A chia hết cho 13 vì 13chia hết cho 13

đúng rồi nên k nha!