K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Tọa độ trung điểm của AC là:

\(\left\{{}\begin{matrix}x=\dfrac{6+2}{2}=\dfrac{8}{2}=4\\y=\dfrac{1+5}{2}=\dfrac{6}{2}=3\end{matrix}\right.\)

b: A(6;1); B(-1;2); C(2;5)

\(\overrightarrow{AB}=\left(-7;1\right);\overrightarrow{AC}=\left(-4;4\right)\)

Vì \(\dfrac{-7}{-4}\ne\dfrac{1}{4}\)

nên A,B,C không thẳng hàng

=>A,B,C lập được thành 1 tam giác

c: Tọa độ trọng tâm của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{6-1+2}{3}=\dfrac{7}{3}\\y=\dfrac{1+2+5}{3}=\dfrac{8}{3}\end{matrix}\right.\)

d: \(AB=\sqrt{\left(-1-6\right)^2+\left(2-1\right)^2}=\sqrt{7^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{\left(2-6\right)^2+\left(5-1\right)^2}=\sqrt{4^2+4^2}=4\sqrt{2}\)

\(BC=\sqrt{\left(2+1\right)^2+\left(5-2\right)^2}=3\sqrt{2}\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+BC+AC=5\sqrt{2}+4\sqrt{2}+3\sqrt{2}=12\sqrt{2}\)

Xét ΔABC có \(AB^2=BC^2+CA^2\)

nên ΔACB vuông tại C

=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot3\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot3\sqrt{2}=12\)