Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)
b) Do \(\Delta \) có vecto chỉ phương là \(\overrightarrow u = \left( { - 2{\rm{ }};{\rm{ 3}}} \right).\)nên vecto pháp tuyến của \(\Delta \) là \(\overrightarrow n = \left( {3{\rm{ }};{\rm{ }}2} \right).\)
Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)
Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}.\)
a) Hai vectơ \(\overrightarrow u {\rm{ }}\)và \(\overrightarrow {{M_o}M} \)cùng phương với nhau.
b) Xét \(M\left( {x;y} \right)\). Vì cùng phương với nên có số thực t sao cho \(\overrightarrow {{M_o}M} = t\overrightarrow u {\rm{ }}\)
c) Do \(\overrightarrow {{M_o}M} = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u = \left( {a;b} \right)\) nên:
\(\overrightarrow {{M_o}M} = t\overrightarrow u {\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x - {x_o} = at\\y - {y_o} = bt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\)
Vậy tọa độ điểm M là: \(M\left( {{x_o} + at;{y_o} + bt} \right)\)
a) Phương của hai vecto \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.
b) Ta có: \(\overrightarrow {{M_o}M} = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u = \left( {a;b} \right)\)
Xét điểm \(M\left( {x;y} \right) \in \Delta \). Vì \(\overrightarrow {{M_o}M} \bot \overrightarrow n \) nên: \(\overrightarrow {{M_o}M} .\overrightarrow n = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0 \Leftrightarrow ax + by - a{x_o} + b{y_o} = 0\)
a) Tọa độ vecto pháp tuyến của \(\Delta \) là:
Tọa độ vecto chỉ phương của \(\Delta \) là:
b) Chọn \(x = 0;x = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {0;1} \right),B\left( {1;2} \right)\)
Gọi \(M\left( {x;y} \right)\)
Ta có: \(\overrightarrow {AM} = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n = \left( {a;b} \right)\)
\( M \in \Delta \Leftrightarrow \overrightarrow {AM} \bot \overrightarrow n \)
Hay \(\overrightarrow {AM} .\overrightarrow n = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).
a) Phương trình tổng quát của đường thẳng \(A{F_1}{\rm{ }}\)là:\(\frac{x}{{ - 3}} + \frac{y}{4} = 1 \Leftrightarrow 4x - 3y + 12 = 0\).
Phương trình tổng quát của đường thẳng \(A{F_2}{\rm{ }}\)là:\(\frac{x}{3} + \frac{y}{4} = 1 \Leftrightarrow 4x + 3y - 12 = 0\).
b) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = I{F_1} = I{F_2} \Leftrightarrow I{A^2} = I{F_1}^2 = I{F_2}^2\)
Vì \(I{A^2} = I{F_1}^2,I{F_1}^2 = I{F_2}^2\) nên: \(\left\{ \begin{array}{l}{a^2} + {\left( {4 - b} \right)^2} = {\left( { - 3 - a} \right)^2} + {b^2}\\{\left( { - 3 - a} \right)^2} + {b^2} = {\left( {3 - a} \right)^2} + {b^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = \frac{7}{8}\end{array} \right.\) .
=> \(I\left( {0;\frac{7}{8}} \right)\) và \(R = IA = \sqrt {{0^2} + {{\left( {\frac{{25}}{8}} \right)}^2}} = \frac{{25}}{8}\)
Vậy phương trình đường tròn ngoại tiếp tam giác \(A{F_1}{F_2}\) là: \({x^2} + {\left( {y - \frac{7}{8}} \right)^2} = {\left( {\frac{{25}}{8}} \right)^2}\)
c) Gọi phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).
Do elip có 2 tiêu điểm \({F_1},{F_2}\) nên \(\sqrt {{a^2} - {b^2}} = c = 3 \Leftrightarrow {a^2} - {b^2} = 9\).
Mặt khác điểm A thuộc elip nên \(\frac{{16}}{{{b^2}}} = 1 \Leftrightarrow b = 4\left( {do{\rm{ }}b > 0} \right)\). Vậy \(a = 5\).
Vậy phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{4^2}}} = 1\).
a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)
b) Ta có : \(\overrightarrow n = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n \ne 0} \right){\rm{ ,}}\overrightarrow {HM} = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM} = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).
c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
a) Khoảng cách từ điểm A đến \({\Delta _1}\) là: \(d\left( {A,{\Delta _1}} \right) = \frac{{\left| {3.1 - 1.\left( { - 2} \right) + 4} \right|}}{{\sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{9}{{\sqrt {10} }}\)
b) Phương trình tổng quát của đường thẳng \({\Delta _2}\)là: \(2x + y + 3 = 0\)
Khoảng cách từ điểm B đến \({\Delta _2}\) là: \(d\left( {A,{\Delta _2}} \right) = \frac{{\left| {2.\left( { - 3} \right) + 1.2 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{1}{{\sqrt 5 }}\)
a) Phương trình tổng quát của đường thẳng \({\Delta _1}\) là: \(2\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 2x + y - 5 = 0\).
b) Phương trình tham số của đường thẳng \({\Delta _2}\) là:\(\left\{ \begin{array}{l}x = - 2 + 3t\\y = 1 + 2t\end{array} \right.\)
c) Phương trình đường thẳng AB đi qua điểm \(A\left( {1;3} \right)\) nhận \(\overrightarrow {AB} = \left( { - 3; - 2} \right)\) là vectơ chỉ phương nên phương trình tham số của AB là \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 - 2t\end{array} \right.\)