K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

b) Do \(\Delta \) có vecto chỉ phương là \(\overrightarrow u  = \left( { - 2{\rm{ }};{\rm{ 3}}} \right).\)nên vecto pháp tuyến của \(\Delta \) là \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)

Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Tọa độ vecto pháp tuyến của \(\Delta \) là:  

Tọa độ vecto chỉ phương của \(\Delta \) là:

b) Chọn \(x = 0;x = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {0;1} \right),B\left( {1;2} \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi \(M\left( {x;y} \right)\)

Ta có: \(\overrightarrow {AM}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n  = \left( {a;b} \right)\)

\( M \in \Delta \Leftrightarrow \overrightarrow {AM}  \bot \overrightarrow n \)

Hay \(\overrightarrow {AM} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}.\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Hai vectơ \(\overrightarrow u {\rm{ }}\)và \(\overrightarrow {{M_o}M} \)cùng phương với nhau.

b) Xét \(M\left( {x;y} \right)\). Vì cùng phương với  nên có số thực t sao cho \(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }}\)

c) Do \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\) nên:

\(\overrightarrow {{M_o}M}  = t\overrightarrow u {\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x - {x_o} = at\\y - {y_o} = bt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = {x_o} + at\\y = {y_o} + bt\end{array} \right.\)

Vậy tọa độ điểm M là: \(M\left( {{x_o} + at;{y_o} + bt} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương của hai vecto \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.

b) Ta có: \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\)

Xét điểm \(M\left( {x;y} \right) \in \Delta \). Vì \(\overrightarrow {{M_o}M}  \bot \overrightarrow n \) nên: \(\overrightarrow {{M_o}M} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0 \Leftrightarrow ax + by - a{x_o} + b{y_o} = 0\) 

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)

Do vecto pháp tuyến là \(\overrightarrow n  = (2; - \;3) \Rightarrow \overrightarrow u  = (3;2)\)

Từ đó ta có phương trình tham số của đường thẳng d là:

 \(\left\{ \begin{array}{l}x =  - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)

b) Phương trình tham số của  đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x =  - 2 - 7t\\y =  - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).

c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)

Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)

b) Ta có : \(\overrightarrow n  = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n  \ne 0} \right){\rm{ ,}}\overrightarrow {HM}  = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM}  = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).

c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng \({\Delta _1}\) là: \(2\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 2x + y - 5 = 0\).

b) Phương trình tham số của đường thẳng \({\Delta _2}\)  là:\(\left\{ \begin{array}{l}x =  - 2 + 3t\\y = 1 + 2t\end{array} \right.\)

c) Phương trình đường thẳng AB đi qua điểm \(A\left( {1;3} \right)\) nhận \(\overrightarrow {AB}  = \left( { - 3; - 2} \right)\) là vectơ chỉ phương nên phương trình tham số của AB là \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 - 2t\end{array} \right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)