K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng \(A{F_1}{\rm{ }}\)là:\(\frac{x}{{ - 3}} + \frac{y}{4} = 1 \Leftrightarrow 4x - 3y + 12 = 0\).

Phương trình tổng quát của đường thẳng \(A{F_2}{\rm{ }}\)là:\(\frac{x}{3} + \frac{y}{4} = 1 \Leftrightarrow 4x + 3y - 12 = 0\).

b) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = I{F_1} = I{F_2} \Leftrightarrow I{A^2} = I{F_1}^2 = I{F_2}^2\)

Vì \(I{A^2} = I{F_1}^2,I{F_1}^2 = I{F_2}^2\) nên: \(\left\{ \begin{array}{l}{a^2} + {\left( {4 - b} \right)^2} = {\left( { - 3 - a} \right)^2} + {b^2}\\{\left( { - 3 - a} \right)^2} + {b^2} = {\left( {3 - a} \right)^2} + {b^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = \frac{7}{8}\end{array} \right.\) .

=> \(I\left( {0;\frac{7}{8}} \right)\) và \(R = IA = \sqrt {{0^2} + {{\left( {\frac{{25}}{8}} \right)}^2}}  = \frac{{25}}{8}\)

Vậy phương trình đường tròn ngoại tiếp tam giác \(A{F_1}{F_2}\) là: \({x^2} + {\left( {y - \frac{7}{8}} \right)^2} = {\left( {\frac{{25}}{8}} \right)^2}\)

c) Gọi phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Do elip có 2 tiêu điểm \({F_1},{F_2}\) nên \(\sqrt {{a^2} - {b^2}}  = c = 3 \Leftrightarrow {a^2} - {b^2} = 9\).

Mặt khác điểm A thuộc elip nên \(\frac{{16}}{{{b^2}}} = 1 \Leftrightarrow b = 4\left( {do{\rm{ }}b > 0} \right)\). Vậy \(a = 5\).

Vậy phương trình chính tắc của elip là: \(\frac{{{x^2}}}{{{5^2}}} + \frac{{{y^2}}}{{{4^2}}} = 1\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Do \({A_1}{F_1} = a - c\) và \({A_1}{F_2} = a - c\) nện\({A_1}{F_1} + {A_1}{F_2} = 2a\).Vậy \({A_1}\left( { - a;{\rm{ }}0} \right)\) thuộc elip (E).

Mà A (-1; 0) thuộc trục Ox nên \({A_1}\left( { - a;{\rm{ }}0} \right)\) là giao điểm của elip (E) với trục Ox.

Tương tự, ta chứng minh được \({A_2}\left( {a;{\rm{ }}0} \right)\) là giao điểm của clip (E) với trục Ox.

b) Ta có:\({B_2}{F_2} = \sqrt {{{\left( {c - 0} \right)}^2} + {{\left( {0 - b} \right)}^2}}  = \sqrt {{c^2} + {b^2}}  = \sqrt {{a^2}}  = a\).Vì \({B_2}{F_1} = {B_2}{F_2}\) nên\({B_2}{F_1} + {B_2}{F_2} = a + a = 2a\). Do đó, \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\) thuộc elip (E). Mà \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)thuộc trục Oy nên \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)là giao điểm của elip (E) với trục Oy.

Tương tự, ta chứng minh được: \({B_1}\left( {0{\rm{ }};{\rm{  - }}b} \right)\)là giao ddiemr của elip (E) với trục Oy.

Như vậy, elip (E) đi qua bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng \({\Delta _1}\) là: \(2\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 2x + y - 5 = 0\).

b) Phương trình tham số của đường thẳng \({\Delta _2}\)  là:\(\left\{ \begin{array}{l}x =  - 2 + 3t\\y = 1 + 2t\end{array} \right.\)

c) Phương trình đường thẳng AB đi qua điểm \(A\left( {1;3} \right)\) nhận \(\overrightarrow {AB}  = \left( { - 3; - 2} \right)\) là vectơ chỉ phương nên phương trình tham số của AB là \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 3 - 2t\end{array} \right.\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

b) Do \(\Delta \) có vecto chỉ phương là \(\overrightarrow u  = \left( { - 2{\rm{ }};{\rm{ 3}}} \right).\)nên vecto pháp tuyến của \(\Delta \) là \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)

Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây...
Đọc tiếp

Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\)  thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây khi đó là đường gấp khúc\(AM{F_2}\) , Cho thước quay quanh điểm B (trùng \({F_1}\)), tức là điểm A chuyển động trên đường tròn tâm B có bán kính bằng độ dài đoạn thẳng AB, mép thước luôn áp sát mặt gỗ (Hình 53). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường hypebol. Khi M thay đổi, có nhận xét gì về hiệu\(M{F_1} - M{F_2}\) ?

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khi M thay đổi, hiệu \(M{F_1} - M{F_2} = \left( {M{F_1} + MA} \right) - \left( {M{F_2} + MA} \right) = AB - l{\rm{ }}\)không đổi.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \({F_1}M + {F_2}M = 2a \Leftrightarrow \sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}}  = 2a\)

21 tháng 4 2017

phương trình (E) có dạng:

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)

Vì (E) đi qua điểm M nên

\(\dfrac{\dfrac{9}{5}}{a^2}+\dfrac{\dfrac{16}{5}}{b^2}=1\)

\(\dfrac{9}{a^2}+\dfrac{16}{b^2}=5\)(1)

Do tam giác \(MF_1F_2\)vuông tại M

Nên M thuộc đường tròn \(x^2+y^2=c^2\)

\(\dfrac{9}{5}+\dfrac{16}{5}=c^2\)

\(5=c^2\)

\(a^2-b^2=5\)

\(a^2=5+b^2\)

Thế vào pt(1)

\(9b^2+16a^2=5a^2b^2\)

\(9b^2+16\left(5+b^2\right)=5b^2\left(5+b^2\right)\)

\(5b^4-80=0\)

\(b^2=\pm4\)

\(\Rightarrow b^2=4\Rightarrow a^2=9\)

\(\left(E\right):\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)

\(\Rightarrow c=\sqrt{5};e=\dfrac{\sqrt{5}}{2}\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Tọa độ vecto pháp tuyến của \(\Delta \) là:  

Tọa độ vecto chỉ phương của \(\Delta \) là:

b) Chọn \(x = 0;x = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {0;1} \right),B\left( {1;2} \right)\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \(\left| {{F_1}M - {F_2}M} \right| = 2a \Leftrightarrow \left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)