Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M(m;-2)
=>M nằm cùng lúc trên hai đường thẳng x=m trên đường thẳng y=-2
=>M là giao điểm của hai đường thẳng x=m và y=-2
b: M(5;m)
=>M nằm đồng thời trên hai đường thẳng x=5 và đường thẳng y=m
=>M là giao điểm của hai đường thẳng x=5 và y=m
c: M(m-5;2m+3)
=>M sẽ nằm trên cùng lúc hai đường thẳng là x=m-5 và y=2m+3
=>M là giao điểm của hai đường thẳng y=2m+3 và x=m-5
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx+2m+8\)
=>\(x^2-2mx-2m-8=0\)(1)
Thay m=-4 vào (1), ta được:
\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)
=>\(x^2+8x=0\)
=>x(x+8)=0
=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Thay x=0 vào (P), ta được:
\(y=0^2=0\)
Thay x=-8 vào (P), ta được:
\(y=x^2=\left(-8\right)^2=64\)
Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)
b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)
\(=4m^2+8m+32\)
\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)
=>Phương trình (1)luôn có hai nghiệm phân biệt
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)
mà \(x_1+2x_2=2\) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)
=>(2-2m)(4m-2)=-2m-8
=>\(8m-4-8m^2+4m=-2m-8\)
=>\(-8m^2+12m-4+2m+8=0\)
=>\(-8m^2+14m+4=0\)
=>\(-8m^2+16m-2m+4=0\)
=>-8m(m-2)-2(m-2)=0
=>(m-2)(-8m-2)=0
=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
a. Em tự giải
b,
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)
\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)
\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)
Kết hợp hệ thức Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)
Thế vào \(x_1x_2=-2m-8\)
\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)
\(\Leftrightarrow8m^2-14m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)
1: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: A(0;3)
2: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
=>\(B\left(\dfrac{-3}{m+1};0\right)\)
\(OB=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{3}{\left|m+1\right|}\)
\(OA=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=3\)
OA=2OB
=>\(3=\dfrac{6}{\left|m+1\right|}\)
=>|m+1|=2
=>\(\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
Câu b : \(OA=\sqrt{\left(2m-1\right)^2+\left(3m+2\right)^2}=\sqrt{4m^2-4m+4+9m^2+12m+4}=\sqrt{13m^2+8m+8}\ge\sqrt{\dfrac{88}{13}}\Leftrightarrow m=-\dfrac{4}{13}\)