K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

a: M(m;-2)

=>M nằm cùng lúc trên hai đường thẳng x=m trên đường thẳng y=-2

=>M là giao điểm của hai đường thẳng x=m và y=-2

b: M(5;m)

=>M nằm đồng thời trên hai đường thẳng x=5 và đường thẳng y=m

=>M là giao điểm của hai đường thẳng x=5 và y=m

c: M(m-5;2m+3)

=>M sẽ nằm trên cùng lúc hai đường thẳng là x=m-5 và y=2m+3

=>M là giao điểm của hai đường thẳng y=2m+3 và x=m-5

11 tháng 11 2018

Câu b : \(OA=\sqrt{\left(2m-1\right)^2+\left(3m+2\right)^2}=\sqrt{4m^2-4m+4+9m^2+12m+4}=\sqrt{13m^2+8m+8}\ge\sqrt{\dfrac{88}{13}}\Leftrightarrow m=-\dfrac{4}{13}\)

11 tháng 12 2021

1: Để hai đường thẳng cắt nhau thì 

2m+1<>m+2

hay m<>1

 

a: 

loading...

b: 2x^2=162

=>x^2=81

mà x>0

nên x=9

a: Thay x=0 và y=0 vào (d), ta được

\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)

\(\Leftrightarrow m^2-2m=0\)

=>m=0 hoặc m=2

b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)

\(\Rightarrow y=2\cdot2x-9+6=4x-3\)

Phương trình hoành độ giao điểm là:

\(x^2-4x+3=0\)

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

NV
8 tháng 6 2021

Hai đường thẳng trên là song song khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2+2m-2=1\\5\ne2m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\\m\ne1\end{matrix}\right.\)

\(\Leftrightarrow m=-3\)

NV
14 tháng 3 2022

Gọi pt BC có dạng: \(y=ax+b\Rightarrow\left\{{}\begin{matrix}0=6a+b\\3=a.0+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=3\\a=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y=-\dfrac{1}{2}x+3\)

Pt hoành độ giao điểm BC và d:

\(-\dfrac{1}{2}x+3=mx-2m+2\)

\(\Leftrightarrow m\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)=0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)\left(x-2\right)=0\Rightarrow x=2\Rightarrow y=2\)

Vậy \(d_m\) luôn cắt BC tại điểm A cố định có tọa độ \(A\left(2;2\right)\)

b. Ta có: \(OB=\left|x_B\right|=6;OC=\left|y_C\right|=3\)

Từ A kẻ AH vuông góc trục hoành và AK vuông góc trục tung

\(\Rightarrow AH=\left|y_A\right|=2\) ; \(AK=\left|x_A\right|=2\)

\(S_{OAC}=\dfrac{1}{2}AK.OC=\dfrac{1}{2}.2.3=3\) ; \(S_{OAB}=\dfrac{1}{2}AH.OB=6\)

\(S_{OBC}=\dfrac{1}{2}OB.OC=9\)

Giả sử \(d_m\) cắt cạnh OC tại 1 điểm D nằm giữa O và C

\(\Rightarrow S_{ACD}=S_{OAC}-S_{OAD}< S_{OAC}=3< \dfrac{1}{2}S_{OBC}=9\) (ktm)

\(\Rightarrow d_m\) phải cắt cạnh OB tại 1 điểm D nào đó nằm giữa O và B

Khi đó: \(S_{ABD}=\dfrac{1}{2}S_{OBC}=\dfrac{9}{2}\)

Mà \(S_{ABD}=\dfrac{1}{2}AH.BD\Rightarrow BD=\dfrac{2S_{ABD}}{AH}=\dfrac{9}{2}\)

\(\Rightarrow x_B-x_D=\dfrac{9}{2}\Rightarrow x_D=6-\dfrac{9}{2}=\dfrac{3}{2}\)

\(\Rightarrow D\left(\dfrac{3}{2};0\right)\)

Do \(d_m\) qua D nên: \(\dfrac{3}{2}m-2m+2=0\Rightarrow m=4\)

NV
14 tháng 3 2022

undefined

a: Thay x=2 vào (P),ta được:

y=2^2/2=2

2: Thay x=2 và y=2 vào (d), ta được:

m-1+2=2

=>m-1=0

=>m=1