K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=0 và y=0 vào (d), ta được

\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)

\(\Leftrightarrow m^2-2m=0\)

=>m=0 hoặc m=2

b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)

\(\Rightarrow y=2\cdot2x-9+6=4x-3\)

Phương trình hoành độ giao điểm là:

\(x^2-4x+3=0\)

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

19 tháng 11 2023

a: M(m;-2)

=>M nằm cùng lúc trên hai đường thẳng x=m trên đường thẳng y=-2

=>M là giao điểm của hai đường thẳng x=m và y=-2

b: M(5;m)

=>M nằm đồng thời trên hai đường thẳng x=5 và đường thẳng y=m

=>M là giao điểm của hai đường thẳng x=5 và y=m

c: M(m-5;2m+3)

=>M sẽ nằm trên cùng lúc hai đường thẳng là x=m-5 và y=2m+3

=>M là giao điểm của hai đường thẳng y=2m+3 và x=m-5

9 tháng 2 2022

Bn tk nha:🌱☘️

undefined

13 tháng 12 2023

a: Để (d1) và (d2) cắt nhau thì \(2m+1\ne m+2\)

=>\(2m-m\ne2-1\)

=>\(m\ne1\)

b: Khi m=-1 thì (d1): \(y=\left(2-1\right)x+1=x+1\)

Khi m=-1 thì (d2): \(y=\left(1-2\right)x+2=-x+2\)

Vẽ đồ thị:

loading...

Phương trình hoành độ giao điểm là:

x+1=-x+2

=>x+x=2-1

=>2x=1

=>\(x=\dfrac{1}{2}\)

Thay x=1/2 vào y=x+1, ta được:

\(y=\dfrac{1}{2}+1=\dfrac{3}{2}\)

c:

(d1): y=(m+2)x+1

=>(m+2)x-y+1=0

Khoảng cách từ A(1;3) đến (d1) là:

\(d\left(A;\left(d1\right)\right)=\dfrac{\left|1\left(m+2\right)+3\cdot\left(-1\right)+1\right|}{\sqrt{\left(m+2\right)^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|m\right|}{\sqrt{\left(m+2\right)^2+1}}\)

Để d(A;(d1)) lớn nhất thì m+2=0

=>m=-2

Vậy: \(d\left(A;\left(d1\right)\right)_{max}=\dfrac{\left|-2\right|}{\sqrt{\left(-2+2\right)^2+1}}=\dfrac{2}{1}=2\)

13 tháng 12 2023

.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10