K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
31 tháng 3 2022

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)

NV
21 tháng 3 2021

\(cosB=\dfrac{\left|1.2+\left(-7\right).1\right|}{\sqrt{1^2+\left(-7\right)^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

Gọi vtpt của AC có tọa độ \(\left(a;b\right)\)

\(\Rightarrow cosC=cosB=\dfrac{1}{\sqrt{10}}=\dfrac{\left|2a+b\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow2\left(2a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow7a^2+8ab+b^2=0\Leftrightarrow\left(a+b\right)\left(7a+b\right)=0\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-1\\b=-7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;-1\right)\\\left(a;b\right)=\left(1;-7\right)\end{matrix}\right.\)

(Trường hợp \(\left(a;b\right)=\left(1-;7\right)\) loại do khi đó AC song song AB, vô lý)

\(\Rightarrow\) Phương trình AC: \(1\left(x-4\right)-1\left(y-0\right)=0\)

20 tháng 2 2022

cho em hỏi vtpt là gì vậy ?

 

 

30 tháng 3 2021

tên thật là Mai Thúc Loan (梅叔鸞),  vị vua người Việt thời Bắc thuộc, anh hùng dân tộc, người lãnh đạo cuộc khởi nghĩa chống lại sự chiếm đóng của nhà Đường ở Việt Nam vào đầu thế kỉ thứ 8.

NV
21 tháng 3 2021

AC vuông góc BH nên nhận (1;-1) là 1 vtpt

Phương trình AC:

\(1\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow x-y=0\)

A thuộc AC và d nên tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}x-y=0\\x-4y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

M là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_A=\dfrac{8}{3}\\y_C=2y_M-y_A=\dfrac{8}{3}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)

BC song song d nên nhận (1;-4) là 1 vtpt

Phương trình BC:

\(1\left(x-\dfrac{8}{3}\right)-4\left(y-\dfrac{8}{3}\right)=0\Leftrightarrow x-4y+8=0\)

B là giao điểm của BC và BH nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-4y+8=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow B\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=...\Rightarrow\) phương trình đường thẳng AB

NV
5 tháng 3 2023

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y-2=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow A\left(3;1\right)\)

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_G\\y_A+y_B+y_C=3y_G\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B+x_C=6\\y_B+y_C=5\end{matrix}\right.\) (1)

B thuộc AB nên: \(x_B-y_B=2\Rightarrow x_B=y_B+2\)

C thuộc AC nên: \(x_C+2y_C-5=0\Rightarrow x_C=-2y_C+5\)

Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}y_B+2-2y_C+5=6\\y_B+y_C=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_B=3\Rightarrow x_B=5\\y_C=2\Rightarrow x_C=1\end{matrix}\right.\)

Phương trình BC: \(\dfrac{x-5}{1-5}=\dfrac{y-3}{2-3}\Leftrightarrow x-4y+7=0\)

a: Tọa độ I là:

\(\left\{{}\begin{matrix}x=\dfrac{-2+6}{2}=\dfrac{4}{2}=2\\y=\dfrac{4-2}{2}=1\end{matrix}\right.\)

b: A(1;3); I(2;1)

vecto AI=(1;-2)

PTTS của AI là;

x=1+t và y=3-2t

d: I(2;1); C(6;-2)

\(R=IC=\sqrt{\left(6-2\right)^2+\left(-2-1\right)^2}=5\)

Phương trình đường tròn đường kính BC là:

(x-2)^2+(y-1)^2=5^2=25

c: vecto BC=(8;-6)=(4;-3)

=>VTPT là (3;4)

Phương trình BC là:

3(x+2)+4(y-4)=0

=>3x+6+4y-16=0

=>3x+4y-10=0

Phương trình AH là:

4(x-1)+(-3)(y-3)=0

=>4x-4-3y+9=0

=>4x-3y+5=0

Tọa độ H là:

4x-3y+5=0 và 3x+4y-10=0

=>x=2/5 và y=11/5

H(0,4; 2,2); A(1;3)

\(AH=\sqrt{\left(1-0,4\right)^2+\left(3-2,2\right)^2}=1\)