Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
Phương trình (C) là:
(x+2)^2+(y-1)^2=2^2=4
Bài 1:
a: I thuộc Δ nên I(x;-2x-3)
IA=IB
=>IA^2=IB^2
=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)
=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49
=>26x+41=32x+53
=>-6x=-12
=>x=2
=>I(2;-7): R=IA=căn 113
Phương trình (C) là:
(x-2)^2+(y+7)^2=113
2: vecto IA=(7;-8)
Phương trình tiếp tuyến là:
7(x+5)+(-8)(y-1)=0
=>7x+35-8y+8=0
=>7x-8y+43=0
Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)
\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt
Phương trình trung trực MN:
\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)
Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN
Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)
\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)
Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)
Câu 4:
Tọa độtâm I là;
x=(4+2)/2=3 và y=(-3+1)/2=-1
I(3;-1); A(4;-3)
IA=căn (4-3)^2+(-3+1)^2=căn 5
=>(C): (x-3)^2+(y+1)^2=5
Câu 3:
vecto AB=(2;3)
PTTS là:
x=1+2t và y=-2+3t
(x-x0)^2+(y-y0)^2=R^2
I(x;x-6)
=> (x-6)^2+(x-6-4)^2=R^2
(x-4)^2+(x-6)^2=R^2
=> x^2-12x+36+x^2-20x+100=x^2-8x+16+x^2-12x+36
=>12x=84
=>x=7
=>R^2=10
`=>(7-x0)^2+(1-y0)^2=10`
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)
a.
\(\overrightarrow{AB}=\left(-6;3\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)
Đường tròn (C) tâm A và đi qua B có bán kính \(R=AB=3\sqrt{5}\)
Phương trình:
\(\left(x-3\right)^2+\left(y-1\right)^2=45\)
b.
Gọi M là trung điểm AB \(\Rightarrow M\left(0;\dfrac{5}{2}\right)\)
Đường tròn đường kính AB có tâm M và bán kính \(R=\dfrac{AB}{2}=\dfrac{3\sqrt{5}}{2}\)
Phương trình:
\(x^2+\left(y-\dfrac{5}{2}\right)^2=\dfrac{45}{4}\)
I thuộc Δ nên I(-2y+2;y)
Theo đề, ta có: IA=IB
=>IA^2=IB^2
=>(-2y+2-1)^2+(y+1)^2=(-2y+2-4)^2+(y-2)^2
=>(2y-1)^2+(y+1)^2=(2y+2)^2+(y-2)^2
=>4y^2-4y+1+y^2+2y+1=4y^2+8y+4+y^2-4y+4
=>-2y+2=4y+8
=>-6y=-6
=>y=1
=>I(0;1)
I(0;1); A(1;-1)
=>IA=căn (1-0)^2+(-1-1)^2=căn 5
Phương trình của (C) là:
(x-0)^2+(y-1)^2=R^2=5
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
I nằm trên d nên I(x;-2x-5)
IA=IB=R
=>(x-1)^2+(-2x-5+3)^2=(x+3)^2+(-2x-5-1)^2
=>x^2-2x+1+4x^2+8x+4=x^2+6x+9+4x^2+24x+36
=>6x+5=30x+45
=>-24x=40
=>x=-5/3
=>I(-5/3;-5/3)
A(1;-3)
=>R=4/3*căn 5
=>(C): (x+5/3)^2+(y+5/3)^2=80/9