Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Lần lượt tìm các yếu tố tâm và bán kính của mặt cầu.
Cách giải: Tọa độ tâm mặt cầu thỏa mãn hệ
Đáp án B
Phương pháp: (P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2
Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m
Cách giải:
(P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2
Mà
Đáp án D.
Đường thẳng ∆ có vecto chỉ phương u ∆ → = 1 ; 1 ; - 1 .
Một mặt phẳng P có vecto pháp tuyến n p → = 1 ; 2 ; 3
Gọi I = ∆ ∩ P , tọa độ I là nghiệm của hệ phương trình:
x + 2 1 = y - 2 1 = z - 1 x + 2 y - 3 z + 4 = 0 ⇒ I - 3 ; 1 ; 1
Do d ⊂ P d ∩ ∆ ≢ ∅ ⇒ I ∈ d và d ⊂ P d ⊥ ∆
⇒ Đường thẳng d có một vecto chỉ phương u d → = u ∆ → , n P → = - 1 ; 2 ; 1
Vậy d : x + 3 - 1 = y - 1 2 = z - 1 1 .