Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi A = ∆ ∩ P ; d = P ∩ Q
Lấy I ∈ ∆ ⇒ A ; I cố định, kẻ I H ⊥ P ; H K ⊥ d ⇒ P ; Q ^ = I K H ^ = φ
Do I A ≥ I K ⇒ sin φ = I H I K ≥ I H I A ⇒ φ m i n khi K ≡ A tức là I A ⊥ d ⇒ n Q → = u ∆ → ; u d →
Trong đó n ∆ ¯ = 1 ; - 2 ; - 2 ; u d ¯ = u ∆ ¯ ; u P ¯ = 3 ; 0 ; 3 = 3 1 ; 0 ; 1
Suy ra n Q ¯ = u ∆ ¯ ; u d ¯ = - 2 1 ; 1 ; - 1 , mặt khác (Q) chứa đường thẳng ∆ nên (Q) đi qua điểm (1;2;-1)
Do đó Q : x + y - z - 4 = 0 ⇒ A 4 ; 0 ; 0 , B ( 0 ; 4 ; 0 ) , C ( 0 ; 0 ; - 4 ) ⇒ V O . A B C = 64 6 = 32 3
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Đáp án D
Đường thẳng d 1 đi qua M 1 1 ; − 2 ; − 1 và có VTCP u 1 → = 3 ; − 1 ; 2 .
Đường thẳng d 2 đi qua M 2 12 ; 0 ; 10 và có VTCP u 2 → = − 3 ; 1 ; − 2 .
Như vậy: u 1 → = − u 2 → , M 1 ∉ d 2 . Suy ra d 1 / / d 2 .
Chú ý: Hai đường thẳng d 1 và d 2 song song nên em không thể lấy tích có hướng của hai VTCP để tìm VTPT của mặt phẳng vì tích có hướng của hai vectơ cùng phương là vectơ-không.
Gọi n → là một VTPT của mặt phẳng α thì vuông n → góc với hai vectơ không cùng phương
Gọi n ( a,b,c ) là VTPT của (Q)
⇒ n a , b , c . u 2 ; 1 ; - 1 = 0 ⇔ 2 a + b - c = 0 ⇒ c = 2 a + b
Khi đó góc α giữa hai mặt phẳng (P) và (Q) nhỏ nhất khi lớn nhất với
là VTPT của ta có
cos α = n . n ' → n → . n ' → = 2 z - b + 2 c 3 a 2 + b 2 + c 2 = 6 a + b 3 5 a 2 + 4 a b + 2 b 2
⇒ P 2 = 36 a 2 + 12 a b + b 2 9 5 a 2 + 4 a + 2 b 2 = 36 t 2 + 12 t + 1 9 5 a 2 + 4 a + 2 b 2
Xét hàm số
f t = 36 t 2 + 12 t + 1 9 5 a 2 + 4 a + 2 b 2 ⇒ f ' t = 2 42 t 2 + 67 t + 10 9 5 a 2 + 4 a + 2 b 2 = 0 ⇔ t = - 1 6 t = - 10 7
Vậy GTLN của P = f - 10 7 = 53 54 = 0 , 99
⇒ α = 8 o
Đáp án cần chọn là B
Đáp án A
Khi đó đường thẳng d vuông góc với ∆ tại A. Chọn u d → = u Δ → , n P → = − 1 ; 6 ; 4 .
Như vậy (Q) là mặt phẳng chứa hai đường thẳng cắt nhau a và ∆ .
Do đó (Q) đi qua A và nhận vectơ u Q → = u Δ → , u d → = 10 ; − 7 ; 13 .
Phương trình mặt phẳng Q : 10 x − 2 − 7 y − 1 + 13 z = 0 ⇔ 10 x − 7 y + 13 z − 13 = 0