K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Chọn C

 

17 tháng 6 2017

Đáp án C.

Ta có phương trình mặt phẳng (P) đi qua M và vuông góc với d

Gọi I là giao điểm của đường thẳng d và (P) khi đó tạo độ I là nghiệm của hệ

M’ đối xứng với M qua d thì I là trung điểm của MM’ M’(0;-3;3)

9 tháng 7 2017

Đáp án A

Ta có

Giả hệ với ẩn t; k và ku

10 tháng 8 2019

Chọn A

Vì A thuộc  nên A (1+2t;1-t;-1+t).

Vì B thuộc  nên B (-2+3t';-1+t';2+2t').

Thay vào (3) ta được t=1, t'=2 thỏa mãn.

3 tháng 6 2019

Chọn A

Gọi I = d ∩ Δ. Do I Δ nên I (2t + 1; t – 1; -t).

từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2 ; 1 ; 0) nên có phương trình 

NV
4 tháng 2 2021

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)

\(T=MA^2+MB^2+MC^2\)

\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(T=3MG^2+GA^2+GB^2+GC^2\)

Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)

Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)

M là giao điểm (d) và (P) nên thỏa mãn:

\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)

14 tháng 4 2019

Chọn B

Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).

2 tháng 2 2017

23 tháng 9 2017

Chọn A

Mặt phẳng qua I vuông góc với d có phương trình

 

Gọi H là hình chiếu của I trên đường thẳng d.

 

Thay x, y, z từ phương trình của d vào (1) ta có