Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Mặt phẳng (ABC) đi qua B (1; 0; -1) và có một véctơ pháp tuyến là:
Phương trình mặt phẳng (ABC): 5x + 2y - z - 6 = 0
Độ dài đường cao xuất phát từ đỉnh D (0; 0; d) của tứ diện ABCD bằng d(D, (ABC))
Theo bài ra ta có:
Do D thuộc tia Oz nên D (0; 0; 3).
Chọn D
Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có
Từ giả thiết
áp dụng bất đẳng thức AM- GM ta có
Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất
=> (B'C'D') song song với (BCD) và đi qua điểm B'
suy ra vectơ pháp tuyến của mặt phẳng (B'C'D') là:
Vậy phương trình (B'C'D') là:
Chọn A
Theo giả thiết ABCD vuông tại A và B và có diện tích bằng 6√2 nên:
Do ABCD là hình thang vuông tại A và B nên . Giả sử khi đó ta có:
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{AC}=\left(-3;3;3\right)\) ; \(\overrightarrow{AD}=\left(-1;3;1\right)\)
\(V_{ABCD}=\dfrac{1}{6}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{AD}\right|=4\)