K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

Chọn D

Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có

Từ giả thiết 

áp dụng bất đẳng thức AM- GM ta có

Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất 

=> (B'C'D') song song với (BCD) và đi qua điểm  B'

suy ra vectơ pháp tuyến của mặt phẳng (B'C'D')  là:

Vậy phương trình (B'C'D') là:

NV
4 tháng 2 2021

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)

\(T=MA^2+MB^2+MC^2\)

\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(T=3MG^2+GA^2+GB^2+GC^2\)

Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)

Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)

M là giao điểm (d) và (P) nên thỏa mãn:

\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)

31 tháng 8 2017

Đáp án A.

Ta có:

Áp dụng BĐT Cô-si cho 3 số dương, ta có:

12 tháng 11 2018

Chọn C

25 tháng 2 2018

Chọn D

Giả sử A (a; 0; 0), B (0; b; 0), C (0; 0; c) với a, b, c > 0

Khi đó mặt phẳng (P) có dạng .

Vì (P) đi qua M nên

Mặt khác OA = 2OB nên a = 2b nên 

Thể tích khối tứ diện OABC : V= abc/6

Ta có:

7 tháng 3 2018

Đáp án C

Phương pháp:  

Cách giải:

Ta tìm được  

Khi đó ta có :  


NV
5 tháng 2 2021

Giống bài trước \(\Rightarrow B'\left(0;2;3\right)\Rightarrow M\left(\dfrac{1}{2};1;\dfrac{3}{2}\right)\)

 

7 tháng 4 2016

Mặt cầu (S) cần tìm có tâm I là trung điểm của AB, với I(2;3;0)

Bán kính của (S) là \(R=\frac{AB}{2}=\sqrt{3}\)

Phương trình của (S) : \(\left(x-2\right)^2+\left(y-3\right)^2+z^2=3\)

Gọi \(M\left(0;0;t\right)\in Oz\)

Do \(V_{MABC}=5\) nên \(\frac{1}{6}\left|\left[\overrightarrow{AB},\overrightarrow{AC}\right]\overrightarrow{AM}\right|=5\Leftrightarrow\left|11+4t\right|=5\)

                                                                     \(\Leftrightarrow\left|11=4t\right|=15\Leftrightarrow\begin{cases}11+4t=15\\11+4t=-15\end{cases}\)

                                                                     \(\Leftrightarrow\begin{cases}t=1\Rightarrow M\left(0;0;1\right)\\t=-\frac{13}{2}\Rightarrow M\left(0;0;-\frac{13}{2}\right)\end{cases}\)

13 tháng 2 2018

Chọn D

Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.