Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Do IJ = 4 > R 1 + R 2 nên hai mặt cầu cắt nhau
Giả sử IJ cắt (P) tại M ta có M J M I = R 2 R 1 = 2
=> J là trung điểm của MI
Đáp án C
Do IJ =4 > R 1 + R 2 nên hai mặt cầu cắt nhau
Giả sử IJ cắt (P) tại M ta có M J M I = R 2 R 1 = 2 => J là trung điểm của MI
=> M(2;1;9) => (P): a(x-2)+b(y-1)+c(z-9)=0 a 2 + b 2 + c 2 > 0
d(I,(P))=4 ⇔ 8 c a 2 + b 2 + c 2 = 4 ⇔ 2 c a 2 + b 2 + c 2 = 1
Do đó c ≠ 0 , chọn c=1 => a 2 + b 2 = 3
Đặt a = 3 sin t , b = 3 cos t ⇒ d ( O ; ( P ) ) = 2 a + b + 9 a 2 + b 2 + c 2 = 2 a + b + 9 2 = 2 3 sin t + 3 c o s t + 9 2
Mặt khác
- 15 ≤ 2 3 sin t + 3 cos t ≤ 15 ⇒ 9 - 15 2 ≤ d 0 ≤ 9 + 15 2 ⇒ M + m = 9
Đáp án B
Giả sử (P) tiếp xúc với (S1), (S2) lần lượt tại A,B
Ta có:
Suy ra M + m = 9.
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)
vậy Min A= c+d-a-b
Gọi I1, I2, R1, R2 lần lượt là tâm và bán kính của các mặt cầu (S1) và (S2). Theo điều kiện tiếp xúc có I 1 A = R 1 ; I 2 B = R 2 .
Mặt khác hai mặt cầu tiếp xúc ngoài với nhau tại điểm M nên I 1 I 2 = R 1 + R 2 = I 1 A + I 2 B ⇒ I 1 I 2 luôn tiếp xúc với mặt cầu đường kính AB tại điểm M tức là M thuộc mặt cầu đường kính AB
Phương trình mặt cầu đường kính AB là ( S ) : x 2 + y - 1 2 + z - 2 2 = 9 có tâm I(0;1;2), R = 3.
Vì vậy M ∈ ( S ) ⇒ d M , P ≤ d I , P + R
=672+3=675.
Gọi
Dấu bằng đạt tại
Chọn đáp án A.
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m