K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

2 tháng 7 2018

Tiếp tuyến của đồ thị hàm số tại M song song với đường thẳng 

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

23 tháng 10 2018

Đáp án B

Lấy đối xứng đồ thị hàm số f(x)(x-1) qua trục Ox ta được đồ thị của hàm số  f x x - 1 . Từ đồ thị hàm số f x x - 1  ta thấy đường thẳng y = m 2 - m  cắt hàm số  f x x - 1  tại 2 điểm nằm ngoài [-1;1]

⇔ m 2 - m > 0 ⇔ [ m < 0 m > 1

11 tháng 6 2019

20 tháng 7 2019

Chọn đáp án D

Phương pháp

Đồ thị hàm số y=f(x) và đường thẳng y=g(x) có duy nhất 1 điểm chung phương trình hoành độ giao điểm f(x)=g(x) có nghiệm duy nhất.

Cách giải

Phương trình hoành độ giao điểm của đồ thị hai đồ thị hàm số là

Hai đồ thị hàm số có duy nhất 1 điểm chung khi và chỉ khi phương trình (*) có nghiệm duy nhất

19 tháng 1 2018

Đáp án B

Lấy đối xứng đồ thị hàm số  f ( x ) ( x − 1 )  qua trục Ox ta được đồ thị của hàm số  f ( x ) x − 1 . Từ đồ thị hàm số  f ( x ) x − 1  ta thấy đường thẳng  y = m 2 − m  cắt hàm số  f ( x ) x − 1  tại 2 điểm nằm ngoài  [ − 1 ; 1 ] ⇔ m 2 − m > 0 ⇔ m < 0 m > 1

31 tháng 8 2018

Theo giả thiết có 

Do 

Do đó 

Chọn đáp án A.

29 tháng 11 2018

5 tháng 3 2019

Chọn C