Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
d : x = − 1 + 2 t y = − 2 − t , t ∈ ℝ z = 2 t .
Gọi H là hình chiếu của M trên d ⇒ H − 1 + 2 t ; − 2 − t ; 2 t .
⇒ M H → = − 3 + 2 t ; 1 − t ; − 1 + 2 t
Ta có − 3 + 2 t .2 + 1 − t . − 1 + − 1 + 2 t .2 = 0 ⇔ t = 1 ⇒ H 1 ; − 3 ; 2
Suy ra M ' 0 ; − 3 ; 3 .
Đáp án C
Gọi I(x;y;0) là tâm của mặt cầu (S) ⇒ A I → = x - 1 ; y - 2 ; 4 A I → = x - 1 ; y + 3 ; - 1 A I → = x - 2 ; y - 2 ; - 3
Theo bài ra, ta có
I A = I B I A = I C ⇒ x - 1 2 + y - 2 2 + 4 2 = x - 1 2 + y + 3 2 + - 1 2 x - 1 2 + y - 2 2 + 4 2 = x - 2 2 + y - 2 2 + - 3 2 ⇔ x = - 2 y = 1
Vậy I ( - 2 ; 1 ; 0 ) ⇒ A I → = ( - 3 ; - 1 ; 4 ) ⇒ l = 2 . I A = 2 16 .
Đáp án A
Gọi H là hình chiếu vuông góc của B lên đường thẳng CD, khi đó ta có
Do đó yêu cầu bài toán trở thành tìm H để khoảng cách BH là lớn nhất hay nhỏ nhất.
Ta thấy BH nhỏ nhất đúng bằng khoảng cách từ B đến mp (P), ta có
Gọi I(x;y;z) là điểm thỏa mãn 3 I A ⇀ - 2 I B ⇀ = 0 → ⇔ 3 I A ⇀ = 2 I B ⇀
Ta có
Khi đó 3 I A ⇀ = 2 I B ⇀
Ta có:
(vì 3 I A ⇀ - 2 I B ⇀ = 0 ⇀ )
Khi đó | 3 M A ⇀ - 2 M B ⇀ | = | M I ⇀ | = M I nhỏ nhất khi M là hình chiếu của I trên mặt phẳng (P)
Phương trình đường thẳng d qua I(-3;-2;8) và vuông góc với (P) là
Suy ra M = d ∩ ( P ) nên tọa độ điểm M là nghiệm của hệ
Từ đó
⇒ S = 9 a + 3 b + 6 c = - 33 - 8 + 44 = 3
Chọn đáp án B.
Chọn C