K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Đây là định lý CEVA mà, thầy chứng minh chiều thuận nhé.

A B C D E F O

Gọi O là giao điểm của 3 đường.

Ta có: \(\dfrac{FA}{FB}=\dfrac{S_{FCA}}{S_{FCB}}=\dfrac{S_{FOA}}{S_{FOB}}=\dfrac{S_{FCA}-S_{FOA}}{S_{FCB}-S_{FOB}}\)

\(\Rightarrow \dfrac{FA}{FB}=\dfrac{S_{OCA}}{S_{OCB}}\)(1)

Tương tự ta có:

\( \dfrac{DB}{DC}=\dfrac{S_{OAB}}{S_{OAC}}\) (2)

\( \dfrac{EC}{EA}=\dfrac{S_{OBC}}{S_{OBA}}\) (3)

Từ (1), (2), (3) suy ra: \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

(Biểu thức trên của em cần đổi lại như của thầy nhé)

23 tháng 2 2017

@phynit @phynit

Mới mấy ngày thôi nha thầy :)) Chưa đến cả tỉ năm tiếp âu :))

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

DB/DC*EC/EA*FA/FB

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)

DB/DC=AB/AC

EC/EA=BC/BA

FA/FB=CA/CB

=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:

\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)

Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$

$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.

Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)

Vậy ta có đpcm. 

b) 

Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$

$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$ 

Mặt khác:

$FN\parallel AC\Rightarrow FN\parallel AE(2)$

$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$

Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$

Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)

c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:

$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$

$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$

Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm. 

 

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Hình vẽ:

undefined

Sửa đề: Chứng minh \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\)

Xét \(\Delta\)ABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác của tam giác)

Xét \(\Delta\)ABC có BE là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{EC}{EA}=\frac{BC}{BA}\)(tính chất đường phân giác của tam giác)

Xét \(\Delta\)ABC có CF là đường phân giác ứng với cạnh AB(gt)

nên \(\frac{FA}{FB}=\frac{CA}{CB}\)(tính chất đường phân giác của tam giác)

Ta có: \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}\)

\(=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}\)

\(=\frac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

29 tháng 3 2020

A B C D E F

Áp dụng tính chất đường phân giác ta có: 

\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)

\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)

\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)

=> ĐPCM

Nguồn: SGK

29 tháng 3 2020

AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !