Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là định lý CEVA mà, thầy chứng minh chiều thuận nhé.
Gọi O là giao điểm của 3 đường.
Ta có: \(\dfrac{FA}{FB}=\dfrac{S_{FCA}}{S_{FCB}}=\dfrac{S_{FOA}}{S_{FOB}}=\dfrac{S_{FCA}-S_{FOA}}{S_{FCB}-S_{FOB}}\)
\(\Rightarrow \dfrac{FA}{FB}=\dfrac{S_{OCA}}{S_{OCB}}\)(1)
Tương tự ta có:
\( \dfrac{DB}{DC}=\dfrac{S_{OAB}}{S_{OAC}}\) (2)
\( \dfrac{EC}{EA}=\dfrac{S_{OBC}}{S_{OBA}}\) (3)
Từ (1), (2), (3) suy ra: \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
(Biểu thức trên của em cần đổi lại như của thầy nhé)
@phynit @phynit
Mới mấy ngày thôi nha thầy :)) Chưa đến cả tỉ năm tiếp âu :))
Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q
Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)
Nhân 3 đẳng thức vs nhau ta đc:
\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
DB/DC=AB/AC
EC/EA=BC/BA
FA/FB=CA/CB
=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1
Lời giải:
a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:
\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)
Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$
$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.
Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)
Vậy ta có đpcm.
b)
Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$
$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$
Mặt khác:
$FN\parallel AC\Rightarrow FN\parallel AE(2)$
$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$
Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$
Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)
c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:
$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$
$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$
Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm.
Sửa đề: Chứng minh \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\)
Xét \(\Delta\)ABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác của tam giác)
Xét \(\Delta\)ABC có BE là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{EC}{EA}=\frac{BC}{BA}\)(tính chất đường phân giác của tam giác)
Xét \(\Delta\)ABC có CF là đường phân giác ứng với cạnh AB(gt)
nên \(\frac{FA}{FB}=\frac{CA}{CB}\)(tính chất đường phân giác của tam giác)
Ta có: \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}\)
\(=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}\)
\(=\frac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)
Áp dụng tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)
=> ĐPCM
Nguồn: SGK
AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !