K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

Vì trong 3 số nguyên a, b, c có 1 số dương, 1 số âm và 1 số bằng 0

Xét đẳng thức |a|=b^2.(b-c) (1)

=>a, b, c là ba số nguyên khác nhau

Nếu a=0 =>|a|=0

=> Đẳng thức (1) trở thành

b^2.( b-c)=0

Mà b khác c do đó b^2=0=>b=0

                                        =>a=b=0(không thỏa mãn a khác b)

Nếu b=0 ta có đẳng thức (1) trở thành

|a|=0.(0-c)

|a|=0(không thỏa mãn vì a khác 0)

Nếu c=0 ta có đẳng thức (1) trở thành

|a|=b^2. b

|a|=b^3

Vì |a|>0 với mọi a khác 0

=>b^3>0

=>b>0(vì 3 là số lẻ)

=>a<0

Vậy a là số nguyên âm, b là số nguyên dương, c là số 0