Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi n là nồng độ của trà 1 lúc ban đầu
\(n2=\dfrac{\Delta m.n}{\Delta m+m2}=\dfrac{n}{1+\dfrac{m2}{\Delta m}}\left(1\right)\)
thay \(x2=\dfrac{\Delta m}{m2}\)
thay vào trường hợp 1 ta có \(n2=\dfrac{n}{1+\dfrac{1}{x2}}=\dfrac{n.x2}{x2+1}\)
nếu trường hợp đổ trở lại m từ cốc 2 sang cốc 1thì nồng độ nước trà cốc 1
\(n1=\dfrac{\left(m1-\Delta m\right).n+\Delta m.n2}{\left(m1-\Delta m\right)+\Delta m}=\dfrac{\left(m1-\Delta m\right).n+\Delta m.\dfrac{n.x2}{x2+1}}{m1}=n-\dfrac{\Delta m.n}{m1}+\dfrac{\Delta m}{m1}.\dfrac{n.x2}{x2+1}\left(2\right)\)
thay \(x1=\dfrac{\Delta m}{m1}\)
vào trường hợp 2 ta có:\(n1=\left(1-x1\right).n+\dfrac{x1.x2.n}{x2+1}\)
theo giả thiết ta có:\(n1=k.n2\)
hay \(\left(1-x1\right).n+\dfrac{x1.x2.n}{x2+1}=k.\dfrac{n.x2}{x2+1}\)
\(1-x1=\dfrac{\left(k-x1\right).x2}{x2+1}\)
suy ra độ chênh lệch giữa hai cốc:\(k=\dfrac{\left(1-x1\right).\left(1+x2\right)}{x2}+x1=\dfrac{1+x2-x1-x1x2}{x2}+x1=\dfrac{1-x1}{x2}+1\left(3\right)\)
\(< =>\dfrac{1-x1}{x2}=k-1=2,5-1=1,5< =>1=1,5x2+x1\left(4\right)\)
khi đổ nước có khối lượng m từ bình 1 sang bình 2 ta có phương trình cân bằng nhiệt
m.c(t1-t)=m2.c(t-t2)
\(t=\dfrac{\Delta m.c.t1+m2.c.t2}{\Delta m.c+m2.c}=\dfrac{\Delta m.t1+m2.t2}{\Delta m+m2}\)
thêm bớt m2t1 vào tử ta có
\(t=\dfrac{\Delta m.t1+m2.t1+m2.t2-m2.t1}{\Delta m+m2}=t1+\dfrac{m2.\left(t2-t1\right)}{\Delta m+m2}=t1+\dfrac{t2-t1}{x2+1}=t1-\dfrac{t2-t1}{x2+1}\left(6\right)\)
khi đổ m trở lại cốc 1 ta có phương trình cân bằng nhiệt sau
m.c(t'-t)=(m1-m).c(t1-t')
\(=>t'=\dfrac{\Delta m.c.t+\left(m1-\Delta m\right)c.t1}{\Delta m.c\left(m1-\Delta m\right)c}=\dfrac{\Delta m.t+\left(m1-\Delta m\right).t1}{m1}< =>t'=x1.t+t1-x1.t1=x1\left(t-t1\right)+t1\)
thay vào trường hợp 6 ta có:\(t'=\left(t1-\dfrac{t1-t2}{x2+1}\right).x1+t1=t1-\dfrac{x1.\left(t1-t2\right)}{x2+1}\left(< >\right)\)
hiệu nhiệt độ giữa hai cốc
\(t=t'-t=t1-\dfrac{x1.\left(t1-t2\right)}{x2+1}-t1-\dfrac{t1-t2}{x2+1}=\dfrac{t1-t2-x1.\left(t1-t2\right)}{x2+1}=\dfrac{\left(1-x1\right).\left(t1-t2\right)}{x2+1}\left(\backslash\right)\)
thay t1,t2,t vào (/) ta có \(15=\dfrac{\left(1-x1\right).\left(45-5\right)}{x2+1}=>15x2+40x1=25\left(\backslash\backslash\right)\)
giải hệ phương trình từ (4) và (\\) ta có: ta được x1=\(\dfrac{1}{2}\)
x2=\(\dfrac{1}{3}\)
ta thấy khi m tăng thì \(x1=\dfrac{\Delta m}{m1}\)
x2=\(\dfrac{\Delta m}{m2}\)
đều tăng ,do đó từ phần (3) và (//) ta có k và t đều giảm
\(V=200ml=200cm^3=0,2l=2\cdot10^{-4}m^3\)
\(D_{nc}=1g/cm^3=1000kg/m^3\)
\(D_{ncđá}=0,9g/cm^3=900kg/m^3\)
\(D_{đồng}=9g/cm^3=9000kg/m^3\)
Gọi khối lượng nước đá là \(m(kg).\)
Nhiệt lượng truyền từ nước sang mẫu đá là:
\(Q_1=mc\Delta t=V\cdot D\cdot c\cdot\Delta t=2\cdot10^{-4}\cdot1000\cdot4200\cdot5=4200J\)
Nhiệt lượng truyền từ mẫu đá sang nước:
\(Q_2=330m+\left(0,03-m\right)\cdot390\cdot\left(0-5\right)\)
Cân băng nhiệt: \(Q_1=Q_2\)
\(\Rightarrow m\approx1,87g\)
gọi \(m_1\) là khối lượng bình đồng\(\left(m_1=400g=0,4kg\right)\)
\(m_2\) là khối lượng nước có trong bình ban đầu\(\left(m_2=500g=0,5kg\right)\)
\(m_3\) là khối lượng nước đá thả vào bình \(\left(m_3=320g=0,32kg\right)\)
\(m_4\) là khối lượng đá tan khi thả đá vào bình
\(m_5\) là khối lượng nước đổ thêm vào bình \(\left(m_5=1kg\right)\)
a, vì nước đá không tan hết nên nhiệt độ của hỗn hợp bằng 0 độ
ta có: \(Q_{toả}=Q_{thu}\Leftrightarrow Q_{bình}+Q_{nước}=Q_{nướcđá}+Q_{tan}\Leftrightarrow m_1.c_{Cu}.\left(40-0\right)+m_2.c_{nước}.\left(40-0\right)=m_3.c_{nướcđá}.\left[0-\left(-10\right)\right]+m_4.\lambda\Leftrightarrow0,4.400.40+0,5.4200.40=0,32.2100.10+m_4.3,4.10^5\Leftrightarrow m_4=\dfrac{523}{2125}kg\)b, sau khi đổ thêm 1kg nước thì nước đá tan hết trở thành nước, hỗn hợp bắt đầu tăng nhiệt độ. gọi \(t\) là nhiệt độ cuối cùng của hỗn hợp
ta có: \(Q_{toả}'=Q_{thu}'\Leftrightarrow Q_{nướcnóng}=Q_{bình}'+Q_{nước}'+Q_{tan}'+Q_{nướcđá}\Leftrightarrow m_5.c_{nước}.\left(50-t\right)=m_1.c_{Cu}.\left(t-0\right)+m_2.c_{nước}.\left(t-0\right)+\left(m_3-m_4\right).\lambda+m_3.c_{nước}.\left(t-0\right)\Leftrightarrow1.4200.\left(50-t\right)=0,4.400.t+0,5.4200.t+\left(0,32-\dfrac{523}{2125}\right).3,4.10^5+0,32.4200.t\Leftrightarrow t\approx23,69^oC\)
Ta có: \(V_1=200cm^3\Rightarrow m_1=0,2kg,t_1=40^oC\)
\(V_2=800cm^3\Rightarrow m_2=0,8kg,t_2=90^oC\)
Nhiệt độ phòng chính là nhiệt độ cân bằng: \(t=20^oC\)
Nhiệt dung riêng của nước: \(c=4200\)
Nhiệt lượng thu vào của cốc nước ấm \(200cm^3\) là:
\(Q_1=m_1c\left(t_1-t\right)=0,2\cdot4200\cdot\left(40-20\right)=16800J\)
Nhiệt lượng thu vào của cốc nước ấm \(800cm^3\) là:
\(Q_2=m_2c\left(t_2-t\right)=0,8\cdot4200\cdot\left(90-20\right)=235200J\)
Cân bằng nhiệt ta đc:
\(Q_{tỏa}=Q_1+Q_2=252000\)
Nhiệt lượng nước đun sôi tỏa ra:
\(Q_{tỏa}=Q_3=m_3\cdot c\cdot\left(100-20\right)=252000J\)
\(\Rightarrow m_3=0,75kg\)
\(\Rightarrow V_3=750cm^3\)
Nếu đề bài cho nhiệt dung riêng của nước là 4200 J/kgK; nhiệt dung riêng của nước đá là 2100J/kgK thì nhiệt độ cân bằng là 33,270C
Mình ngĩ vậy