Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: | 2 + z | 2 < | 2 - z | 2
⇔ | 2 + x + iy | 2 < | 2 - x - iy | 2
⇔ 2 + x 2 + y 2 < 2 - x 2 + - y 2
⇔ x < 0
Đó là tập hợp các số phức có phần thực nhỏ hơn 0, tức là nửa trái của mặt phẳng tọa độ không kể trục Oy.
Chọn C.
Đặt ;
suy ra
Từ giả thiết, ta có:
Tập hợp điểm biểu diễn các số phức z là đường tròn tâm I(3;-4) bán kính R=2.
Vậy tập hợp điểm M là hình vành khăn tâm O, bán kính đường tròn nhỏ bằng 1,đường tròn lớn bằng 2, không kể các điểm thuộc đường tròn nhỏ.
Chọn D.
Gọi
Ta có
Vậy tập hợp điểm biểu diễn các số phức z là đường tròn tâm I(1;-2) và bán kính R=5
Đáp án D.
Gọi
Vậy tập hợp điểm biểu diễn các số phức là đường tròn tâm I(1;-2) và bán kính R=5
Bình luận: Bài toán này ta dễ dàng nhận ra bằng phương pháp loại trừ nhất định 2 đáp án B và C đúng.
Mặt khác
Vậy biểu diễn hình học của z không thể là hình tròn:
Biểu diễn hình học của số phức.
Số phức z=a+bi được biểu diễn bởi điểm M(a;b) trong mặt phẳng Oxy.
Đó là những điểm nằm phía trong hình tròn bán kính bằng 3 và phía ngoài (kể cả biên) hình tròn bán kính bằng 2 có cùng tâm là điểm biểu diễn số phức z 0 = 1 – 2i , tức là những điểm nằm trong hình vành khăn kể cả biên trong. Đó là những điểm (x; y) trên mặt phẳng tọa độ thỏa mãn điều kiện: 4 ≤ x - 1 2 + y + 2 2 < 9
Chọn D.
Gọi M(x; y) là điểm biểu diễn số phức z = x + yi, x, y ∈ R
Gọi A là điểm biểu diễn số phức 2
Gọi B là điểm biểu diễn số phức -2
Ta có: |z – 2| + |z + 2| = 10 ⇔ MB + MA = 10.
Ta có AB = 4.
Suy ra tập hợp điểm M biểu diễn số phức z là Elip với 2 tiêu điểm là A(2; 0), B( -2; 0) tiêu cự AB = 4 = 2c, độ dài trục lớn là 10 = 2a , độ dài trục bé là
Vậy tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10 là elip có phương trình