K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: OH > R > OK

⇒ ∠(OKH) > ∠(OHK)

(Góc đối diện với cạnh lớn hơn thì lớn hơn)

5 tháng 2 2018

 

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: OH > R > OK

⇒ ∠(OKH) > ∠(OHK)

(Góc đối diện với cạnh lớn hơn thì lớn hơn)

 

25 tháng 2 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: OI ⊥ CD (gt)

Suy ra: IC = ID (đường kính dây cung)

Mà: IA = IB (gt)

Tứ giác ACBD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

23 tháng 6 2017

Đường kính và dây của đường tròn

Đường tròn tâm O bán kính R là tập hợp các điểm cách O một khoảng bằng R

4 tháng 3 2023

Em nhập lại đề nha em!

a: góc SAO=góc SHO=90 độ

=>SAHO nội tiếp

b: Xét ΔSAB và ΔSCA có

góc SAB=góc SCA

góc ASB chung

=>ΔSAB đồng dạng với ΔSCA

=>SA^2=SB*SC

a: góc OHK+góc OBK=180 độ

=>OHKB nội tiếp

b: góc AHK=góc AOK

góc BHK=góc BOK

mà góc AOK=góc BOK

nên góc AHK=góc BHK

=>HK là phân giác của góc AHB

18 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Phân tích

Giả sử tiếp tuyến AB và AC cần dựng thỏa mãn điều kiện bài toán

Ta có: AB ⊥ OB ⇒  ∠ ABO = 90 °

AC ⊥ OC ⇒  ∠ ACO =  90 °

Tam giác ABO có  ∠ ABO =  90 ° nội tiếp trong đường tròn đường kính AO và tam giác ACO có  ∠ ACO = 90o nội tiếp trong đường tròn đường kính AO.

Suy ra B và C là giao điểm của đường tròn đường kính AO với đường tròn (O).

* Cách dựng

- Dựng I là trung điểm của OA

- Dựng đường tròn (I; IO) cắt đường tròn (O) tại B và C

 

- Nối AB, AC ta được hai tiếp tuyến cần dựng

* Chứng minh

Tam giác ABO nội tiếp trong đường tròn (I) có OA là đường kính nên:  ∠ ABO =  90 °

Suy ra: AB ⊥ OB tại B nên AB là tiếp tuyến của đường tròn (O)

Tam giác ACO nội tiếp trong đường tròn (I) có OA là đường kính nên:  ∠ ACO =  90 °

Suy ra: AC ⊥ OC tại C nên AC là tiếp tuyến của đường tròn (O)

* Biện luận

Luôn dựng được đường tròn tâm I, cắt đường tròn tâm O tại hai điểm B và C và luôn có AB, AC là hai tiếp tuyến của đường tròn (O).