K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

Chọn B

28 tháng 12 2021

b

21 tháng 8 2019

Theo quy tắc 4 điểm thì \(\hept{\begin{cases}OA+AB+O'B\ge OO'\\OA+OO'+O'B\ge AB\end{cases}}\Leftrightarrow\hept{\begin{cases}AB\ge OO'-\left(R+R'\right)\left(const\right)\\AB\le OO'+\left(R+R'\right)\left(const\right)\end{cases}}\)

=> AB nhỏ nhất khi A, B nằm giữa OO' ; A, B lớn nhất khi OO' nằm giữa AB 

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

9 tháng 7 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra : BD ⊥ AC     (1)

Ta có : AB = 2R và BC = 2OB = 2R

Suy ra tam giác ABC cân tại B    (2)

Từ (1) và (2) suy ra : AD = DC

20 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: R < OA < 3R ⇔ 2R – R < OA < 2R + R

Suy ra hai đường tròn (O ; R) và (A ; 2R) cắt nhau

9 tháng 7 2016

C B A G O H D

Gọi D là trung điểm của AB . Vì AB cố định nên D cố định, đồng thời O cũng cố định => OD cố định.

Qua G kẻ đường thẳng d song song với OC , cắt OD tại H 

Ta có : \(\hept{\begin{cases}GH\text{//}OC\\GD=\frac{1}{3}CD\end{cases}\Rightarrow\hept{\begin{cases}DH=\frac{1}{3}OD\\HG=\frac{1}{3}OC=\frac{1}{3}R\end{cases}}}\) => DH không đổi => H cố định.

Vì H cố định, \(HG=\frac{1}{3}R\)không đổi nên G di chuyển trên đường tròn tâm H , bán kính \(\frac{R}{3}\)

Vậy \(G\in\left(H;\frac{R}{3}\right)\)