Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
1) x.(y - 2) + (y - 2) = 6
=> (x + 1)(y - 2) = 6 = 1 . 6 = 6. 1 = -1 . (-6) = -6 . (-1) = 2 . 3 = 3 . 2 = -2 . (-3) = (-3) . (-2)
Lập bảng :
x + 1 | 1 | -1 | 6 | -6 | 2 | -2 | 3 | -3 |
y - 2 | 6 | -6 | 1 | -1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 5 | -7 | 1 | -3 | 2 | -4 |
y | 8 | -4 | 3 | 1 | 5 | -1 | 3 | 1 |
Vậy ...
1, x.(y+1)+2.(y+1)=7
(x+2).(y+1)=7
Ta có bảng
x+2 | 1 | -1 | 7 | -7 |
y+1 | 7 | -7 | 1 | -1 |
x | -1 | -3 | 5 | -9 |
y | 6 | -8 | 0 | -2 |
Vậy ...
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
Thử
a) \(\begin{cases}x+5=\left(-11,-1,1,11\right)\\y+3=\left(-1,-11,11,1\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x=\left\{-16,-6,-4,6\right\}\\y=\left\{-4,-14,8,-2\right\}\end{cases}}\)
a) (x+2).(y-3)=5
=> x+2 và y-3 thuộc Ư(5)={-1;-5;1;5}
ta có bảng sau :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 5 |
vậy ta có các cặp số (x;y) là : (-3;-2);(-7;2);(-1;8);(3;5)
c) x.y+3.x-7.y=21
=> x(y+3) - 7.y - 21 = 21 - 21
=> x(y+3) - 7.y - 7.3 = 0
=> x(y-3) - 7(y-3) = 0
=> (x-7)(y-3) = 0
=> x-7 = 0 hoặc y - 3 = 0
=> x = 7 hoặc y = 3
vậy_____
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1