K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Với mọi n thuộc N * ta có :

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+n^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\frac{n^4+n^2+1+2n^3+2n+2n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng vào ta được : 

\(A=\left(1+1-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(=2012-\frac{1}{2012}=\frac{2012^2-1}{2012}\)

16 tháng 1 2018

 ai biết làm chỉ cho mik công thức với :(((

22 tháng 10 2018

a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=\frac{2016}{2017}\)

\(\Rightarrow\) \(S=\frac{1008}{2017}\)

28 tháng 5 2016

Xét biểu thức phụ : \(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Áp dụng : \(\frac{1}{2.\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+\frac{1}{5\sqrt{4}+4\sqrt{5}}+...+\frac{1}{2012\sqrt{2011}+2011\sqrt{2012}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)

28 tháng 5 2016

chóng váng

1 tháng 1 2018

x+1/y và y+1/x là các số nguyên 

=> (x+1/y).(y+1/x) là số nguyên

<=> xy+1/xy+2 là số nguyên 

<=> xy+1/xy là số nguyên

<=> (xy+1/xy)^2 là số tự nhiên

<=> x^2y^2+1/x^2y^2+2 là số tự nhiên

=> x^2y^2+1/x^2y^2 là số nguyên

=> ĐPCM

k mk nha

1 tháng 1 2018

cảm ơn bạn/anh/chị/thầy/cô nhiều nha

19 tháng 7 2016

a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:

 \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)

\(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)

=\(-1-\sqrt{2008}\)

b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào biểu thức B ta được: 

B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)\(\frac{10}{11}\)

19 tháng 7 2016

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)

\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)

\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)

\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\) 

\(=-1-\sqrt{2008}\)

 

Y
13 tháng 6 2019

2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)

\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)

+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

\(\Rightarrow A< \frac{1}{2}\)

Y
13 tháng 6 2019

1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(\Rightarrow A< 2\)

Bài 2 tạm thời chưa nghĩ ra :))

17 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)

\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)

\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)

vô câu hỏi tương tự ấy

16 tháng 1 2018

br258 / 6.18 dư 3 , khi chia 12 ,3 , 21 dư 6 vậy br = 26 .1 / 655