Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)
b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)
c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)
d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)
g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)
a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)
\(=\sqrt{3}\left(2+4-5-9\right)\)
\(=-8\sqrt{3}\)
b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)
\(=7-5=2\)
c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)
\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)
\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)
\(=-11\sqrt{2}\)
e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)
\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)
\(=3-5=-2\)
g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)
\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)
\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))
\(=3-1=2\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)
\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)
\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)
b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)
\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)
\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)
\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)
c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=27+12\sqrt{5}+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)
e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
\(=4+2\sqrt{3}-2\sqrt{3}+4\)
= 8
f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
= 14
a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
= 9 (đpcm)
b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)
\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)