Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\); \(x\ne-5\)
Nhận thấy \(x=\pm3\) là 2 nghiệm của BPT đã cho
- Với \(x\ne\pm3\), do \(\sqrt{x^2-9}>0\), chia 2 vế của BPT cho \(\sqrt{x^2-9}\) được:
\(\frac{3x-1}{x+5}\le x\Leftrightarrow\frac{3x-1}{x+5}-x\le0\Leftrightarrow\frac{3x-1-x\left(x+5\right)}{x}\le0\)
\(\Leftrightarrow\frac{-x^2-2x-1}{x}\le0\Leftrightarrow\frac{\left(x+1\right)^2}{x}\ge0\) \(\Rightarrow\left[{}\begin{matrix}x>0\\x=-1\end{matrix}\right.\)
Kết hợp điều kiện xác định ta được: \(\left[{}\begin{matrix}x=-1\\x\ge3\end{matrix}\right.\)
Mà \(x\in\left[-5;5\right]\Rightarrow x=\left\{-3;-1;3;4;5\right\}\)
\(\Rightarrow\sum x=8\)
a. \(\sqrt{\left(x-1\right)\left(4-1\right)}>x-2\) ⇔ \(\sqrt{-x^2+5x-4}>x-2\)
ĐK: 1 ≤ x ≤ 4 (1)
BPT ⇔ \(\left[{}\begin{matrix}x-2< 0\\\left\{{}\begin{matrix}x-2>0\\-x^2+5x-4>x^2-4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x< 2\\\left\{{}\begin{matrix}x>2\\\frac{9-\sqrt{17}}{4}< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) (2)
Từ (1), (2) suy ra: \(\left[{}\begin{matrix}1\le x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) ⇔ x ∈ (1; \(\frac{9+\sqrt{17}}{4}\))\(|\left\{2\right\}\)
b. ĐK: -3 ≤ x ≤ 4 (1)
BPT ⇔ \(\left\{{}\begin{matrix}x-11\ge0\\12+x-x^2\le\left(x-11\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge11\\\forall x\end{matrix}\right.\) ⇔ x ≥ 11 (2)
Từ (1), (2) suy ra: BPT vô nghiệm
c. ĐK: x ≤ -2, x ≥ 2 (1)
BPT ⇔ (x -3)\(\sqrt{x^2-4}\) ≤ (x - 3)(x + 3)
- Xét x = 3 là nghiệm của BPT (2)
- Xét x≠ 3, BPT ⇔ \(\sqrt{x^2-4}\) ≤ x + 3
⇔ \(\left\{{}\begin{matrix}x+3\ge0\\x^2-4\le\left(x+3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge-3\\x\ge\frac{-5}{2}\end{matrix}\right.\) ⇔ x ≥ \(\frac{-5}{2}\) (3)
Từ (1), (2), (3) suy ra BPT có nghiệm: x ∈ \([\frac{-5}{2};4]\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)
- Với \(x=\pm3\) thỏa mãn
- Với \(x\ne\pm3\)
\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)
\(\Rightarrow x>-5\)
Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)
Tính tổng nghiệm hay tổng nghiệm nguyên?
Tổng nghiệm là \(\sum x=5\)
tổng nghiệm nguyên b