Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
A=1-\(\frac{1}{10}\)
A=\(\frac{9}{10}\)
\(\frac{1}{1.2}.\frac{1}{2.3}....\frac{1}{9.10}=\frac{1.1.1.1.1.1}{1.2.2.3.3....9.9.10}=\frac{1}{1.4.9.16.25.36....100}=\frac{1}{13168189440000}\)
Cái này mà Toán lớp 1 tui xỉu.
Mà mk làm xong h cho mk nha.
ko chep de
= 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
= 1/2 - 1/100
= 49/100
=)) tích nha : j
1/2*3+1/3*4+.....+1/99*100
=1/2-1/3+1/3-1/4+....+1/99-1/100
=1/2-1/100
=50/100-1/100
=49/100
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vì a,b,c,d có vai trò như nhau
Giả sử \(a\ge b\ge c\ge d\)
=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)
=>\(1\le4.\frac{1}{d^2}\)
=>\(\frac{1}{4}\le\frac{1}{d^2}\)
=>\(4\ge d^2\)
=>\(2\ge d\)
Vì d là số tự nhiên khác 0
=>d=1,2
-Xét d=1
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)
Vì\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)
=>Vô lí
-Xét d=2
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
Vì \(a\ge b\ge c\)
=>\(a^2\ge b^2\ge c^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)
=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)
=>\(\frac{1}{4}\le\frac{1}{c^2}\)
=>\(4\ge c^2\)
=>\(2\ge c\)
Vì \(c\ge d=>c\ge2\)
=>c=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
Vì \(a\ge b\)
=>\(a^2\ge b^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)
=>\(\frac{2}{4}\le\frac{2}{b^2}\)
=>\(\frac{1}{4}\le\frac{1}{b^2}\)
=>\(4\ge b^2\)
=>\(2\ge b\)
Vì \(b\ge c=>b\ge2\)
=>b=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)
=>\(\frac{1}{a^2}=\frac{1}{4}\)
=>\(a^2=4=>a=2\)
Vậy a=2,b=2,c=2,d=2
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
=25/101
k cho to nhe