K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

Giải:

\(S=\dfrac{1}{1.4}-\dfrac{1}{4.7}-\dfrac{1}{7.10}-...-\dfrac{1}{97.100}\)

\(\Leftrightarrow S=-\left(-\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{101}{100}\right)\)

\(\Leftrightarrow S=\dfrac{101}{300}\)

Vậy ...

15 tháng 5 2018

Bạn ơi cho mình hỏi tại sao phía trước \(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-.....+\dfrac{1}{97}-\dfrac{1}{100}\) lại là \(-\dfrac{1}{3}\)

15 tháng 6 2018

Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)

\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)

\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

\(S=\dfrac{1009}{2019}\)

Còn lại bạn làm tương tự hết nhé .

30 tháng 11 2017

Xuất phát từ giả thiết , ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

=> \(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

=> \(\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)

=> \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

=> \(a\left(ab+bc+ac\right)+b\left(ab+bc+ac\right)+c\left(ab+bc+ac\right)-abc=0\)=> a2b + abc + a2c + ab2 + b2c + abc + abc + bc2 + ac2 - abc = 0

=> ab(a + b) + ac( a + c) + bc( b + c) + 2abc = 0

=> ab( a + b + c) + ac( a + b + c ) + bc( b + c) = 0

=> ( a + b + c)a( b + c) + bc( b + c) = 0

=> ( b + c)( a2 + ab + ac + bc) = 0

=> ( b + c)( a + b)( c + a) = 0

Suy ra :

* b = -c

*a = -b

* c = -a

TH1 :Với b = -c

\(VT=\dfrac{1}{a^{1995}}+\dfrac{1}{\left(-c\right)^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{a^{1995}}\)

\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{a^{1995}+\left(-c\right)^{1995}+c^{1995}}=\dfrac{1}{a^{1995}}=VT\)

TH2 : với a = -b

\(VT=\dfrac{1}{\left(-b\right)^{1995}}+\dfrac{1}{b^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{c^{1995}}\)

\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{\left(-b\right)^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{c^{1995}}=VT\)

TH3 . c = -a , Tương tự

Vậy , đẳng thức được Chứng minh

9 tháng 7 2017

Đặt \(\dfrac{1}{117}=x;\dfrac{1}{119}=y\)

\(\Rightarrow\dfrac{1}{39}=3x\)

Ta có: \(A=\left(3+x\right)y-4x\left(5+1-y\right)-5xy+8.3x\)

\(=3y+xy-20x-4x+4xy-5xy+24x\)

\(=3y\)

Thay \(y=\dfrac{1}{119}\rightarrow A:\)

\(A=3.\dfrac{1}{119}=\dfrac{3}{119}\)

Vậy \(A=\dfrac{3}{119}.\)

9 tháng 7 2017

Đặt \(a=\dfrac{1}{117};b=\dfrac{1}{119}\) thay vào A được:

A=\(\left(3+a\right)b-4a\left(6-b\right)-5ab+\dfrac{8}{39}\)

=\(3b+ab-24a+4ab-5ab+\dfrac{8}{39}\)

=\(3b-24a+\dfrac{8}{39}\) (1)

Thay \(a=\dfrac{1}{117};b=\dfrac{1}{119}\) vào (1) ta đuợc:

A=\(\dfrac{3}{119}-\dfrac{24}{117}+\dfrac{8}{39}=\dfrac{3}{119}-0=\dfrac{3}{119}\)

Chúc các bn học tốtbanh

9 tháng 4 2017

sai đề

8 tháng 12 2021

\(\dfrac{2x^3+5 -x^3-4}{x^2-x+1}=\dfrac{x^3+1 }{x+1}\)

8 tháng 12 2021

\(\dfrac{2x^3+5-x^3-4}{x^2-x+1}\) = \(\dfrac{x^3-1}{x^2-x+1}\)

\(\Leftrightarrow\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{x\left(x+1\right)}=-1\left(đkxđ:x\ne\pm1;0;2;3\right)\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x}-\dfrac{1}{x+1}=-1\)

\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{1}{x+1}=-1\)

\(\Leftrightarrow\dfrac{4}{x^2-2x-3}=-1\)

\(\Leftrightarrow x^2-2x-3=-4\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\left(loai\right)\)

Vậy không có giá trị x thỏa mãn

7 tháng 5 2018

Nhớ thêm điều kiện nữa nhé. Chứ vầy chưa đủ để làm đâu

7 tháng 5 2018

Bổ sung ĐK a,b không âm nhé

ÁP dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :

\(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\)\(\dfrac{\left(1+1\right)^2}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}\)

P/s : Không thì cậu dùng Cô-Si thường vẫn ra nhé