K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Nhớ thêm điều kiện nữa nhé. Chứ vầy chưa đủ để làm đâu

7 tháng 5 2018

Bổ sung ĐK a,b không âm nhé

ÁP dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :

\(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\)\(\dfrac{\left(1+1\right)^2}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}\)

P/s : Không thì cậu dùng Cô-Si thường vẫn ra nhé

20 tháng 4 2018

dùng cách khoai nhất đi,quy đồng lên,trừ, chứng minh hiệu >=0

20 tháng 4 2018

khoai nhất là gì-.-

20 tháng 12 2019

cho mình hỏi bạn biết làm chưa nếu rồi thì giúp mình được không ạ mình ko biết làm

24 tháng 11 2018

\(\dfrac{4a^2-9b^2}{a^2b^2}\div\dfrac{2ax+3bx}{2ab}\)

\(=\dfrac{\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2}\times\dfrac{2ab}{x\left(2a+3b\right)}\)

\(=\dfrac{2ab\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2x\left(2a+3b\right)}=\dfrac{4a-6b}{xab}\)

\(=\dfrac{2x}{\left(5-2b\right)\left(5+2b\right)}\times\dfrac{5+2b}{1}\)

\(=\dfrac{2x\left(5+2b\right)}{\left(5-2b\right)\left(5+2b\right)}=\dfrac{2x}{5-2b}\)

\(=\dfrac{\left(2-a\right)^2b}{2ab\left(2-a\right)}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{ab}{2ab}=\dfrac{2b}{2ab}=\dfrac{1}{a}\)

7 tháng 2 2021

undefined

NV
20 tháng 12 2020

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\Rightarrow\left\{{}\begin{matrix}bc=-ab-ac\\ab=-bc-ac\\ac=-ab-bc\end{matrix}\right.\)

\(M=\dfrac{1}{a^2+bc-ab-ac}+\dfrac{1}{b^2+ac-ab-bc}+\dfrac{1}{c^2+ab-bc-ac}\)

\(=\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-c\right)-a\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\dfrac{1}{\left(a-b\right)\left(a-c\right)}-\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

13 tháng 1 2021

Ta có kết quả tổng quát hơn như sau:

Cho $a,b,c \neq 0$ thỏa mãn $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0.$

Chứng minh rằng $$S={\frac {k{a}^{2}-k-1}{{a}^{2}+2\,bc}}+{\frac {{b}^{2}k-k-1}{2\,ac+{b}^{2}}}+{\frac {{c}^{2}k-k-1}{2\,ab+{c}^{2}}}=k$$

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề thiếu dữ kiện để tính gtnn. Bạn coi lại.