Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{3.\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}{4.\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{11}\right)}=\frac{3}{4}\)
Ta có \(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\)
M = 3/4 - 3/5 + 3/7 + 3/11 / 13/4 - 13/5 + 13/7 + 13/11
M = 3.(1/4 - 1/5 + 1/7 + 1/11) / 13.(1/4 - 1/5 + 1/7 + 1/11)
M = 3/13
M = 3/4 - 3/5 + 3/7 + 3/11 / 13/4 - 13/5 + 13/7 + 13/11
M = 3.(1/4 - 1/5 + 1/7 + 1/11) / 13.(1/4 - 1/5 + 1/7 + 1/11)
M = 3/13
ta có
đặt 3/5+3/7-3/11=N=> N=3*(1/5+1/7-1/11)
đặt 4/5+4/7-4/11=P=> P=4*(1/5+1/7-1/11)
=> N/P=3*(1/5+1/7-1/11)/4*(1/5+1/7-1/11)=> M=3/4
- Ta co \(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}\)\(=\frac{3\times\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\times\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}\)\(=\frac{3}{4}\)
2. Goi d la uoc chung lon nhat cua n va n+1 thi \(n⋮d\) va \(n+1⋮d\)
\(\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d\in\left[1;-1\right]\)
Vay \(\frac{n}{n+1}\)la phan so toi gian
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
\(\Rightarrow A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(A=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{95.99}\right)\)
\(A=4.\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{4}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{32}{99}\)
\(\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+\frac{4}{11}.\frac{4}{15}+...+\frac{4}{95}.\frac{4}{99}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Leftrightarrow A=\frac{32}{99}\)
\(\frac{A}{4}=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\)
\(\frac{A}{4}=\frac{7-3}{3.7}+\frac{11-7}{7.11}+...+\frac{99-95}{95.99}\)
\(\frac{A}{4}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(A=\frac{4.32}{99}\)
\(4.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{95}-\frac{1}{99}\\ 4.A=\frac{1}{3}-\frac{1}{99}\\ 4.A=\frac{32}{99}\\ A=\frac{32}{99}:4\\ A=\frac{8}{99}\)
\(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\)
3/4 nha bn