Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)
= 1/2 . (1/1 - 1/2011)
= 1/2 . 2010 / 2011
= 1005/2011
Ta có:
\(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\right)\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2007.2009}+\frac{2}{2009.2011}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2009.2011}=\frac{2010}{2011}\div2=\frac{1005}{2011}\)
Vậy giá trị của biểu thức là \(\frac{1005}{2011}\)
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
2A = 2/1.3 +2/3.5 + 2/5.7 + ... + 2/2007.2009 + 2/2009. 2011
2A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/ 2007 - 1/2009 + 1/2009 - 1/2011
Gian uoc het ta co: 2A = 1/1 - 1/2011
2A = 2010/2011
A = 2010/2011 X 1/2
A = 1005/2011
**** mình nha
\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\frac{8}{9}\)
\(=\frac{4}{9}\)
Đặt: A=1/1.3+1/3.5+1/5.7+1/7.9
2A=2/1.3+2/3.5+2/5.7+2/7.9
2A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9
2A=1-1/9
2A=8/9
A=4/9
A=1/1x3+1/3x5+1/5x7+...+1/99x101
gấp cả 2 vế lên 2 lần ta có:
Ax2=2/1x3+2/3x5+2/5x7+...+2/99x101
Ax2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
Ax2=1-1/101
Ax2=100/101
A=100/101:2=50/101
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Chúc bạn học tốt nha !!!
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+............+\frac{1}{2009}-\frac{1}{2011}=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
sai rồi top scorer ạ tử trừ mẫu là 2 mà tử là 1 phải nhân 2 lên tử