Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
Bài giải
Nếu đề là \(F=\frac{1}{\left|x\right|}+2017\) thì làm như sau :
* Tìm giá trị lớn nhất :
\(\Rightarrow\text{ Vì }\frac{1}{\left|x\right|}>0\text{ và F lớn nhất }\Rightarrow\text{ }\frac{1}{\left|x\right|}\text{ lớn nhất }\)
\(\Leftrightarrow\text{ }\left|x\right|\text{ bé nhất }\left(x\ne0\right)\)
\(\Rightarrow\text{ }\left|x\right|\text{ là số nguyên dương nhỏ nhất }\Rightarrow\text{ }\left|x\right|=1\text{ }\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(\Rightarrow\text{ }F=\frac{1}{\left|x\right|}+2017< 1+2017=2018\)
\(\text{Vậy }Max\text{ }F=2018\)
* Gía trị bé nhất không tìm được nha !
Bài giải
Làm nốt trường hợp còn lại bạn Rain nói nha ! Vì đề bạn ghi không rõ mới làm thế này nha ! TH2 : \(F=\frac{1}{\left|x\right|+2017}\)
* Gía trị lớn nhất
\(F=\frac{1}{\left|x\right|+2017}\text{ đạt giá trị lớn nhất khi }\left|x\right|+2017\text{ đạt GTNN }\)
Mà \(\left|x\right|\ge0\text{ }\Rightarrow\text{ }\left|x\right|+2017\ge2017\)
\(\text{ Vậy để }F\text{ lớn nhất thì }\left|x\right|+2017=2017\text{ Dấu " = " xảy ra khi }\left|x\right|=0\text{ }\Rightarrow\text{ }x=0\)
\(\text{Vậy }Max\text{ }F=\frac{1}{2017}\)
* Gía trị nhỏ nhất cũng không tìm được nha bạn !
\(D=\dfrac{1}{2\left|x-1\right|+3}\)
\(\left|x-1\right|\ge0\Rightarrow2\left|x-1\right|\ge0\Rightarrow2\left|x-1\right|+3\ge3\)
\(D=\dfrac{1}{2\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)
Vậy \(B< 1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)
\(\rightarrow B< 1\rightarrowđpcm\)
câu B: vì /3.x+1/ lớn hơn hoặc bằng 0
suy ra /3.x+1/ +1/4 lớn hơn hoặc bằng 0+1/4
suy ra B lớn hơn hoặc bằng 1/4
vậy Bmin là 1/4
câu C vì / 5-3.x / lớn hơn hoặc bằng 0
suy ra /5-3.x/ +1 lớn hơn hoặc bằng 0+1
suy ra C lớn hơn hoặc bằng 1
Vậy Cmin là 1
câu D vì /4+1/2.x/ lớn hơn hoặc bằng 0
suy ra /4+1/2.x/ +7 lớn hơn hoặc bằng 0+7
suy ra D lớn hơn hoặc bằng 7
vậy Dmin là 7