Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2=1^2\)
\(\Leftrightarrow x-2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy x = 3 hoặc x = 1
\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-1=-2\)
<=> 2x = -1
<=> x = -0,5
Vậy x = -0,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+2\\x=-1+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy\(x\in\left\{3;1\right\}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-1\times2\)
\(x=-2\)
\(x\left(\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x\left(\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\frac{1}{2}=\frac{1}{4}\\x\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}:\frac{1}{2}\\x=-\frac{1}{4}:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)
ta có \(\frac{-1}{2xy^2}.\frac{-3}{4x^3y}.2y\)=\(\frac{6y}{8x^4y^3}\)=\(\frac{6}{8x^4y^2}\)
vì x4y2>hoặc =0
=>8 x4y2>hoặc =0
=> 6/8x4y2> hoặc =0
vậy 3 đơn thức ko thể có cùng giá trị âm
mik mới học mà
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}\left(Loai\right)}\)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< \frac{-1}{2}\end{cases}}\)
\(\Leftrightarrow x>2\)hoặc \(x< \frac{-1}{2}\)
Vậy \(\orbr{\begin{cases}x>2\\x< \frac{-1}{2}\end{cases}}\)
a, \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\text{ }\left(x+1\right)\text{ và }\left(x-2\right)\text{ trái dấu}\)
Mà \(x+1>x-2\)
\(\Rightarrow\text{ }\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) \(\Rightarrow\text{ }\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) \(\Rightarrow\text{ }-1< x< 2\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
b, \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{1}{2}\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{1}{2}\end{cases}}\)
\(x>2\) hoặc \(x< -\frac{1}{2}\)
x+\(\frac{1}{3}\)=\(\frac{2}{5}\)- (\(\frac{-1}{3}\))
x + \(\frac{1}{3}\)= \(\frac{2}{5}\)+\(\frac{1}{3}\)
x +1/3 =11/15
x= 11/15 -1/3
x= 2/5
b, 5/7-x=1/4 -(-3/5)
5/7 - x = 1/4 +3/5
5/7 - x =17/20
x = 5/7 -17/ 20
x= -19/140
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)
Vậy \(B< 1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)
\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)
\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)
\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)
\(\rightarrow B< 1\rightarrowđpcm\)