K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=-\left(-2\right)^2-2\cdot\left(-2\right)\cdot4+3\cdot\left(-2\right)^3+2\cdot4-3\cdot\left(-2\right)^3\)

\(=-4+16-24+8+24=-4+24=20\)

15 tháng 1 2022

Thay x=-2, y=4 vào biểu thức ta có:
\(-x^2-2xy+3x^3+2y-3x^3\\ =-x^2-2xy+2y\\ =-\left(-2\right)^2-2\left(-2\right).4+2.4\\ =-4+16+8\\ =20\)

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

9 tháng 4 2016

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

12 tháng 3 2022

1, Thay x = 1/3 ; y = -1/5 ta được 

\(=\dfrac{3.1}{9}-5\left(-\dfrac{1}{5}\right)+1=\dfrac{1}{3}+2=\dfrac{7}{3}\)

2, Thay x = -2 ; y = -1/2 ta được 

\(=5.4\left(-\dfrac{1}{2}\right)+3\left(-2\right)\left(-\dfrac{1}{2}\right)-\dfrac{2\left(-2\right).1}{4}\)

\(=-10+3+1=-6\)

25 tháng 3 2018

A = x+ 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x+ 2xy – 3x3 + 2y3 + 3x3 – y3 = x+ 2xy + y3 

Thay x = 5; y = 4 ta được:

A = 5+ 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

25 tháng 3 2018

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

 x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

 129 tại x = 5 và y = 4.

20 tháng 5 2021

P = x3 - 2x2y - 3x2 - 2xy + 4y2 + 3x - 5

= (x3 - 2x2y - 3x2) - (2xy - 4y2 - 6y) + (3x - 6y - 9) + 4

= x2(x - 2y - 3) - 2y(x - 2y - 3) + 3(x - 2y-  3) + 4

= (x - 2y - 3)(x2 - 2y + 3) + 4 

= 4 (Vì x - 2y - 3 = 0)

A=x^2y(2/3+3+1)=14/3*x^2y

Khi x=3 và y=-1/7 thì A=14/3*3^2*(-1/7)

=-42*1/7=-6

19 tháng 2 2022

a, \(A=\left(x+2y\right)^2-x+2y\)

Thay x = 2 ; y = -1 ta được 

\(A=\left(2-2\right)^2-2-2=-4\)

b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)

Thay x = 1 vào B ta được \(B=3+8-1=10\)

c, Thay x = 1 ; y = -1 ta được 

\(C=3,2.1.\left(-1\right)=-3,2\)

d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được 

\(D=3.9-5\left(-1\right)+1=27+5+1=33\)

19 tháng 2 2022

thay x=2,y=-1 vào biểu thức A ta có;

 A=(2+2.(-1)^2-2+2.(-1)

A=(2+-2)^2-2+-2

A=0-2+-2

A=-4

b)

 (x^2+4)(x-1)=0

 suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)

(+)x-1=0

    x   =1

thay x=1 vào biểu thức B ta có;

B=3.1^2+8.1-1

B=3.1+8-1

B=3+8-1

B=10

c)thay x=1 và y=-1 vào biểu thức C ta có;

C=3,2.1^5.(-1)^3

C=3,2.1.(-1)

C=(-3,2)

d)giá trị tuyệt đối của 3=3 hoặc (-3)

TH1;thay x=3:y=-1 vào biểu thức d ta có;

D=3.3^2-5.(-1)+1

D=3.9-(-5)+1

D=27+5+1

D=33

 

    

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$