Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(12x^2+5x-12y^2+12y-10xy-3.\)
\(=12x^2+9x-4x-12y^2+6y+6y-18xy+8xy-3.\)
\(=\left(12x^2-18xy+9x\right)-\left(4x-6y+3\right)+\left(8xy-12y^2+6y\right)\)
\(=3x\left(4x-6y+3\right)-\left(4x-6y+3\right)+2y\left(4x-6y+3\right)\)
\(=\left(4x-6y+3\right)\left(3x-1+2y\right)\)
2/ \(2x^2+y^2+3x-2y-3xy+1\)
\(=\left(y^2-2y+1\right)+\left(3x-3xy\right)+2x^2\)
\(=\left(y-1\right)^2+3x\left(1-y\right)+2x^2\)
\(=\left(y-1\right)^2-3x\left(y-1\right)+2x^2\)
a)= \(\frac{-1}{xy}\)
b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)= \(\frac{3x}{2x\left(x+3\right)}\)- \(\frac{x-6}{2x\left(x+3\right)}\)= \(\frac{2x+6}{2x\left(x+3\right)}\)= \(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)= \(\frac{1}{x}\)
c)\(\frac{1}{xy-x^2}\)- \(\frac{1}{y^2-xy}\)= \(\frac{1}{x\left(x-y\right)}\)- \(\frac{1}{-y\left(x-y\right)}\)= \(\frac{y}{xy\left(x-y\right)}\)- \(\frac{-x}{xy\left(x-y\right)}\)= \(\frac{y+x}{xy\left(x-y\right)}\)
nhớ tick nhé
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
C = y( x^4-y^4)-x^4y+y^5
=x^4y-y^5-x^4y+y^5
=0
Vậy...........................................
\(A=4x^2-y^2-2y-1\)
\(=\left(2x\right)^2-\left(y+1\right)^2\)
\(=\left(2x+y+1\right)\left(2x-y-1\right)\)
\(=-197\)
Vậy....
x( 1 + y ) - y( xy - 1 ) - x2y
= x + xy - xy2 + y - x2y
= ( x + y ) + ( xy - xy2 - x2y )
= ( x + y ) + xy( 1 - y - x )
= ( x + y ) + xy[ -( x + y - 1 ) ]
= ( x + y ) - xy( x + y - 1 ) (*)
Với x + y = 5 ; xy = 2
(*) = 5 - 2( 5 - 1 ) = 5 - 2.4 = -3
Bài làm :
Đặt \(A=x\left(1+y\right)-y\left(xy-1\right)-x^2y\)
\(=x+xy-xy^2+y-x^2y\)
\(=\left(x+y\right)+\left(xy-xy^2-x^2y\right)\)
\(=\left(x+y\right)+xy\left(1-y-x\right)\)
\(=\left(x+y\right)+xy\left[1-\left(y+x\right)\right]\)
Thay x + y = 5 và xy = 2 vào biểu thức trên , ta có :
\(A=5+2\left(1-5\right)\)
\(=5+2.\left(-4\right)\)
\(=-3\)
Vậy giá trị của biểu thức bằng -3 khi x + y = 5 và xy = 2 .
Học tốt