Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\dfrac{9}{10}:\dfrac{3}{2}-\left(2\dfrac{1}{3}\times4\dfrac{1}{2}-2\times2\dfrac{1}{3}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{10}:\dfrac{3}{2}-\left(\dfrac{7}{3}\times\dfrac{9}{2}-2\times\dfrac{7}{3}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{10}\cdot\dfrac{2}{3}-\left[\dfrac{7}{3}\times\left(\dfrac{9}{2}-2\right)\right]:\dfrac{7}{4}\)
\(=\dfrac{59}{15}-\left(\dfrac{7}{3}\times\dfrac{5}{2}\right):\dfrac{7}{4}\)
\(=\dfrac{59}{15}-\dfrac{35}{6}\cdot\dfrac{4}{7}\)
\(=\dfrac{59}{15}-\dfrac{10}{3}\)
\(=\dfrac{59}{15}-\dfrac{50}{15}\)
\(=\dfrac{9}{15}\)
\(=\dfrac{3}{5}\)
\(Toru\)
5,5 + \(\dfrac{3}{4}\) - 5 + \(\dfrac{1}{4}\)
(5,5 - 5) + (\(\dfrac{3}{4}\) + \(\dfrac{1}{4}\))
= 0,5 + 1
= 1,5
\(\dfrac{5}{2}\) x \(\dfrac{2}{3}\) + \(\dfrac{1}{4}\) : \(\dfrac{3}{2}\)
= \(\dfrac{5}{2}\) x \(\dfrac{2}{3}\) + \(\dfrac{1}{4}\) x \(\dfrac{2}{3}\)
= (\(\dfrac{5}{2}\) + \(\dfrac{1}{4}\)) x \(\dfrac{2}{3}\)
= (\(\dfrac{10}{4}\) + \(\dfrac{1}{4}\)) x \(\dfrac{2}{3}\)
= \(\dfrac{11}{4}\) x \(\dfrac{2}{3}\)
= \(\dfrac{11}{6}\)
Tính \(x\):
435 - [\(x\) + 16] = 425 : 17
435 - [\(x\) + 16] = 25
[\(x\) + 16] = 435 - 25
\(x\) + 16 = 410
\(x\) = 410 - 16
\(x\) = 394
4.
a. 1/2 + 1/4 + 1/5
= 1*10/20 + 1*5/20 + 1*4/20
= (10 + 5 + 4)/20
= 19/20
= 0,95
b.1/2 * 4/5 : 1/4
= (1*4/2*5) : 1/4
= 4/10 : 1/4
= 2/5 * 4
= 8/5
= 1,6
a) \(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2.\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=2.\left(1-\dfrac{1}{100}\right)\)
\(=2.\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
_____
b) \(\dfrac{3}{1\times5}+\dfrac{3}{5\times9}+\dfrac{3}{9\times13}+...+\dfrac{3}{97\times101}\)
\(=3.\left(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{97\times101}\right)\)
\(=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=3.\left(1-\dfrac{1}{101}\right)\)
\(=3.\dfrac{100}{101}\)
\(=\dfrac{300}{101}\)
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49